Phyt©n

ChipProg Device Programmers

User's Guide
ChipProg-481,
ChipProg-G41,

ChipProg-48,
ChipProg-40,
ChipProg-ISP

ChipProg Device Programmers

© 2015 Phyton, Inc. Microsystems and Development Tools

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for anyloss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: May 2015 in (whereever you are located)

Contents

Table of Contents

Foreword

Part | Introduction

1 TermsS AN DefiMitiO NS, . i e e ettt aaaas

S VS (=Y (R (Yo LU TR =T 0 =Y o T PP

Part Il ChipProg Family Brief Description

O O o TT o] o oo L TSP PPN

IMJOT FEALUIES ..ttt ettt e kbt e e et e et e oo h bt e s ab e e e st e e e eh b e e ea b e e e a bt e e eb b e e sabeeembeeennbeesabeeanneeens
[o T T oI o] g = U= Vo A= £ oSSR
oA A= TSI L= 1 U L= SRS

22 @1 1 o] = o Yo I

IMBJOT FRALUIES ..ttt a ettt e e e e h bt e e a bt 4o sttt e eh et e ea bt e e at e e e b bt e shb e e et e e nnteenabeeanneeens
[o Ve T I o] g = U= Vo = o F oSN
o AT TSI L= = SRS

G O o T o] = o T PP

IMBJOT FEALUTES oottt h et e bkt e bt e st e st e oot e e bt ea e bt e nh e e bt e bt e bt et e en b e eneenaresbeennee e

Hardw are characteristics

SOFEW AT FRATUTES ooiiiiiiie ettt e e et e e e et e e e ettt e e e eabeeeeeeataeeeeaaabeeeesebeseeeeassteeeeaasbaseesasaeeeesnnseneens
N o T o1 = o Yo

IMLJOT FEAIUTIES ..oiiiiiiiiii ettt ettt e e a e e et e e bt e e ehbeeeateaeate e e eabe e eabe e e abe e e ea b e e ambeeeabeeeabbeesmbeesmbeeeanbeesnbeaanneaaan

Hardw are characteristics

SOTIW AT FEALUTES ittt h bt bt e bt bt et s e s ae e e b e nae ekt enb e e bt e bt e b e e e e eneenne s
B GNP PIOG ISP o
IMIJOT FRALUIES ..ttt ettt e ettt e e bt e e bt e oo a bt e e Rt e e e a bt e e eh b e e sab e e eab e e e ebb e e sabeeambeeennbeesabeeanneaens

[o T T eI o] g = L= o A= g F T oSN
o AT = TSI L= 1 U L= SRS

Part lll Quick Start

1 Installing the ChipProgUSB SOftWareovuiiiiii e e
2 INStAIIING the USB DIiVEIS. .. ittt ettt et et e e enes

I o = Y o ATV LI L = = 1= 1 1o Y

(O N1l oY PSP STPTOPPRP
[0 1T o] = oY o Tl 7 PSSP STPTOPPR

ChipProg-48
ChipProg-40
ChipProg-ISP

O T (o NI S =Y o] =T

ON-lINE HEIP bbbt bbbttt e e et e et b e b e b e bt bbb e e et ees
TECNNICAI SUPPOIT ettt b bbbt b e h s st b e b e b e bt s bt e bt e bt e st e e e sa e st et et et e ebe e
CONACE INTOIMALION .ottt ettt bbb et e e e b e s b s bbbt b ees

Part IV ChipProg Control Options

1 Graphical UsSer INTEITaCE. e e

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Device Programmers

USET INTEITACE OVEIVIEW wi.eiiieiiiie ittt et e st em e sm e s R e e m e e neen e e e e e e nnnesneenneenne 38
JLICC X1 <= OO PR 39
L1V 0 U PPN 39
TRE FIE IMIBINU. ...ttt ettt esr et e nr e e R e e et e n e et e e e e e s e nneenne e ree e nne 40
CONFIGUIALION FIES ...ttt e bt ab e et e e ae e e sab e e e abe e e nbbeesaneesnteeeas 41
TRE VIBW IMIBINUL ...ttt ettt ettt esm e E e nm e R e e et e n e e e e e e e nmnesmeenreenneenreenne 41
TRE PrOJECT MEINU ...ttt ettt bt ettt e e hb e o bt e ettt e bb e e e b e e e b et e bt e e eab e e ebeeensneas 42
The ProjeCt OPtIONS DIAIOG.ccuueieietaieie ettt ettt ettt et e e bt e e ba e e sbe e e abe e e san e e ebeeeaneeeaanees 42
THe OPEN PrOJECE DIAIOG.ceueveeiutie ettt ettt bttt b e be et e bt e e b e e b e e e be e e san e e abe e e nbeeeanneas 43
PrOJECT REPOSIEONY. ... ettt ettt sttt ettt e hb e e bt e et et e bb e e sab e e aabeeennbeesabeesbeeanne 43
THE CONFIGUIE IMENUL ...ttt ettt ettt ettt e bb e e e bt e et et e bb e e e b e e e be e e bb e e eabeeebeeennneas 44
The SElECt DEVICE QIAIOMP.cuveeeiutieetet ettt b et be e b e e b e e e be e e san e e ebeeeaneeennneas 45
THE BUFFEIS QIAIOG ...ttt b e b e b e b e e s bt e e be e e nneeenaneas 45
The Buffer Configuration di@log............ooueiiiieiiie et bbbt 46

MAUN BUFFEE LAY ...ttt ae ettt ehe e s et e ettt e sab e e s ab e e e bn e e snneeanneeean 46

BUFT I LAY IS ettt h e a e bt e e aa e e s a bt e e bt e a b e e st e e nn e nane e anee e a7

The Serialization, Checksum and LOg I@lOg............eeiuiiiiiiiiiieiiie e a7
[Tl =T = USY =1 (] o PSP P PRSPPI 48

DEVICE SEIIANZALION.........eiieeieeeetee ettt ettt e r e e n e e 49
ChECKSUM ettt r e et e r e e n e n 50
(o[Fo V(3] (0 o PP OP R TPPPPR 51

CUSTOM SNAUOW ATEAS ...ttt e s r e e e r e e n e e n e e e e s e e nneeaneenneene 51
Overlaping data specified in SNAAOW Areas...........coiiiiiiiiiiiieriie e 51

(o I =P PPP RS SUPPUPIN 52

The PreferenCeSs GIAl0G........oouuii ittt b e e b e e be e e san e e e be e e nneeeaanees 53
The ENVIFONMENT QIAI0G.ee ettt bbbttt be e b e e b e e rbe e e san e e ebe e e abeeeanneas 55
FONES e 55

(6o PSPPI 56
MaPPING HOL KEYS ...ttt a e st e et e e s et e e st e e e bn e e saneeanneeean 57

TOOIDAI e 57
SIS E ST Lo [PRI 58
MISCEIANEOUS SEELINGS ...ttt sttt sae et e ettt e sab e e st e e e bn e e saneesnneeeas 58
Configurating EAItOr DIGIOQ...........eeiueeeiiie ettt ettt sttt e bt e e sat e e s be e e nbn e e naneesnree e 59
[T o = Tl = o 1 (o] S T= 1 1] 0o PSP OP PRSPPI 59

The EAItOr KEY MaPPING et ettt ettt ettt et e st e et e e sa b e e et e e e beeenabeesabeesbeeennne 61

The Edit Key ComMMAN DIAlOG.ceiteeiiie ettt ettt sbe et eennne 61

THE COMMANTS IMENUL.....eereeiieii ettt ettt esr e e e sme e r e e r e e n e et e e e e e e e nmnenreenmeenreenreenne 62
1022 o711 =] PSPPI 62
LS To 4o 1Y =T o 1U O SO P TP OUPR 63
TNE WINGOW IMBNU. ...ttt ettt e sm et enm e r e e et e n e e e s e e e e nmneemeenmeenneenreenne 64
TRE HEID IMBNUL. ...ttt ekt et ettt e hb e e e bt e et et e bb e e e bt e et et e bt e e eab e e e beeensneas 65
WINAOW S e st r e et e e e et et e st e e e e R e e Rt e e Re e e Rt e R e e et e r e e ne e e s e e R e ne e nn e e n e r e e r e 65
The Program Manager WINAOWcoieioiiiiiiie ettt sttt st e bt e b e e sab e e e be e e tbeesabeeebeeeneneas 65
The Program ManagGET TAD.........co.uiiiii ettt b et s b e b e an e b e nae e nnneas 66
AULO PrOGIAIMIMING. ... ettt ettt ettt et e e bt e e bt e e bb e e eab e e eabe e e abe e e aab e e eabeeeabeeensbeesabeeanbeeennne 67

LIS O] o (o] 4TSN = o TSP SUUPPP 68

1S o100 F= 1 - PO PR OP PRSPPI 69

The SEAtIStICS TAD.......eeeiee e e 70
The Device and Algorithm Parameters WINAOWcooiiiiiioii e 71
BUFFEI DUMP WINGOW ...ttt ettt ettt ekt e e st e e b et ek bt e eab e e e b e e e be e e abbeeeabeeebeeennneas 74
The 'Configuring @ BUFfer' dIl0g.........cooiiiii e e 75
The 'BUFfEr SELUP' QIBI0G. ... c..eeeietee ettt b et e s b e rbe e e s et e ebe e e nneeennnees 76
The 'Display from addreSs' QIalOg........cc.ueeiuiiiiiieie e rb e 78
The "MOify Data' QIAIOQcoueeeiueieetie ettt b et b e e b e e b e e rbe e e san e e ebeeenaeeeannees 78

© 2015 Phyton, Inc. Microsystems and Development Tools

Contents 5

The 'MemoOry BIOCKS' GIAI0Q.c...eieieiiiiie ettt et s rbe e e e b e ebeeeaneees

LI LCI o= Yo Lo 1= oo S ST UPR T SUUPPP

FIlE FOIMEAES oottt enr e r e n e n e

THE "SAVE FlE" TIBIOQ. ..ottt bbbt b et be e e e bt e b ne e naneas

The Device INFOrmation WiINOOWccoiiiiriiiiiieieeseese e e e e e nreenne
Phyton programming QOAPLETS........coiiuiiiiee ittt ettt e et e e tb e e sab e st e e snneesabeesbeeennne
Adapters for in-system programming..

THE CONSO0IE WINGOW ...ttt sm et esr e e r e e et e n e e e st e e e nmneameenneenreenreenne
ATV gTe (o S o g o]) O P TP OUROPPR
SIMPHTIEA USET INTEITACE ..ottt b e e b et e e bt e e bt e sab e e e be e e nneeesanees
Settings of SIMPIIfied USEr INTEITACE........oouiiiiii et
Operations w ith Simplified User Interface

(O] o L=Y = o T ES VA4 T o o] =1 £ P

CommMaANd LiN& CONIIOL. ...t et e e e ens 92

COMM AN INE OPTIONS ettt h e bt bt bt e bt et e e bt ea bt e b e eae e ek e e nb e et e e nbeenbe e e e eaneeaneas 94
O o T =T YA o T o) 1) 97
On-the-Fly command line options
ON-the-Fly ULIIITY FEIUIN COURS ..oiiiiiiiiiieii ettt ettt ettt e e bt e e s be e e e bt e e sbeeesbbeeanbeeeabeeasnaeeanns
ON-the-Fly CONTIrol @XM PIE ..ottt ettt et e e he e e s bt e e e bt e e abeeesbbeeenbeeeabeeeaneeeanes
SIS Yol] o) ol 1 1= T PP PP I PPTPRTTN

The Script Files Dialog
How to create and edit script files
THE BAIEOT WINAOW ...ttt see e s e e r e e nn e e nreenn e e neenne s
L= G = PSPPI
The Search fOr TEXE DIAIOG.cuutiteieiiie ettt ettt e st esbe e e sbeeesabeeesneeesineeanne
The Replace Text Dialog.........
The Confirm Replace Dialog
The Multi-File Search RESUILS DIAlOG. ccouiiiieieiiie ettt e e
Search for REQUIAI EXPIrESSIONScciuiiiiiieiiie ittt ettt ettt et e et e st e st e e b e e saneeennees
The Set/Retrieve BOOKMArK DIGIOGSuiiuiiiieieiiiie ettt ettt ettt ettt e e sneeesineeanne
L@/ TaTo [=T 0 EY=To I/ o T [OO
The Condensed Mode SEtUP DIAIOG.coiuiiiiiieiiie ettt ettt siee e e
Automatic WOrd COMPIELION.eiiiiieie ettt e sb et e sbe e e be e e sbeeesieeennne
Syntax Highlighting..................
The Display from Line Number Dialog
The QUICK WALCH FUNCLION.viiiee et e et e e e s e e e e st e e e s e e e s esnaeeeennnaeeeeannneneas
(=] (oTo] 1@ o =T = Ui] TSP UPRUPPTPPP
How to start and debug SCriPt fIlES .ottt
The AutoWatches Pane...
THe WALCHES WINTOWveiiiiiiiiiiie ettt e s e s e s r e e nneenreen e e neenne s
The Display Watches OptionS DIAIOQ.cueteiueieiiie ittt ettt sbe e sineeanne
R LCIANe (o LYo (od g B = o o PSPPSR
LI LEIL =T Y T (oS PSPR PR
The VO SreamM WINAOWcccoiiiiiiieiee ettt re e e s e s e s reenre e neenneeneenneas

6 Programming Automation Via DLL........ccoiiiiiiiiii e e

AppPlication CoONtrol INTEITACEciiiiiii e bbbt 123

ACT FUNCLIONS ottt bbb bbbt bt e ettt b e bt b e bt e s s e b e b e s b e e b e s bt bt bt ee e ns
@ - T4 o o PSSR
ACEEXIl oot
ACLLOAACONTIGFIIE. ... ettt bbbt b e bbbt a e e bbb b e b e
ACI|_SaveConfigFile..
AACT _SEEDBVICE. ... eeeteett ettt ettt ae et e sttt e bt e a e et ea e E e eh R e e Rt e Ee et en Rt Rt e en et Re e nn e be e et e beene e reenee s

© 2015 Phyton, Inc. Microsystems and Development Tools

6 ChipProg Device Programmers

ALCT_GEEDBVICE. ...ttt ettt etttk a e e bt ekt oo a bt e oAbt e E et e e R bt e e b et e bt e e ehb e e e be e e be e e anbe e e be e e beeenane 130

F Y O B =1 =T PSSP RRTOPPRPPTOE 130

AT CrEAIEBUITEI ...ttt ettt et b e e h b e e b et ek et e eab e e e be e e be e e e nb e e ebeeebeeenane 130

ACT_REAIOCBUFTET ...ttt ettt e e a b e e b et e ket e e ab e e be e e be e e enbeeebeeebeeennne 130

A CT _REAULAY ...ttt h et b ettt e e ab e e bt e et et e eh b e e b et e b et e e hb e e b e e e be e e e nbe e e ne e e beeenane 131

F Y O L 1= == SO PP OP PO OUPPUPRN 131

F O I 1= = PP OP P OUOURPUPRN 131

ACI_GEtPrOgrammMINGPAraMSei ittt estee et e bt e te e e aab e e abe e e beeeasb e e abeeeabeeeasseeabeeeabeeessseeeabeeanbeeennne 132

ACI_SetProgrammMINGPAIaIMScoiiuiiiiieieriee et estee et ee b et ste e e aaeeeabe e e beeeasbeeabeeeabeeeasseeabeeaabeeessbesaabeeenbeeennne 132

F Y& R €T (olo @] o] iTo] o TR PSPPI UROUPPPPRN 132

F Y& ST 1 o]0 @])1 o] ISP OP P OUROUPPUPRN 133

ACI_AIIProgOptONSDETAUIL............eiieieiei e bbbt et e e sin e e beeenbeeenane 134

F YO I = d=To] U [Tox 1o o IS PP P OURPUPRN 134

LY O S = T 1 ¥ [T (o) PP PP PP OUROUPPUPRN 134

F Y O I €7 T T0 5] r= o S PSPPSR OPPRPPIOE 135

F Y O B T £ = LU PP PSP RRPOPPRRPTOt 135

ACLTErMINALEFUNCHION. ...ttt ettt ettt ettt e e e e a b e e b et e ket e sab e e aabeeebeeesnbeeebeeebeeenane 135

ACI_GangTerMINAEFUNCTIONeiitii ittt ettt b ettt e e s ab e e e be e e beeesnbeeebeeebeeenane 135

ACTFIBLOAM.ttt ettt bbbk a e e bbb R bbbttt bbbt b ne e s 136

ACI_FIESAVE. ...ttt bttt b ekt a e bt bt e e h bt e bt b et e e ab e e be e e be e e anb e e e be e e beeenane 136

LY O ST 10T RS] 7= (oo PP PP PO OURPUPRN 136

ACI_SEIECIDEVICEDIAIOG.t eatet ettt ettt ettt ettt ettt et eesa b e e bt e e be e e sab e e ebe e e be e e enb e e ebeeebeeenane 136

ACT_BUFFEISDIAIOY ...ttt ettt ettt et e b et ettt e s hb e e ab et e bt e e sab e e eabe e e be e e enbeeebeeebeeennne 137

LY O o= o | 1= B = o o PP PP P OUOUPPUPRN 137

ACT_SAVEFIEDIAIOG. ...ttt ettt ettt e e h e b et bt e e e bt be e be e e e b e e e be e e beeenane 138

F Y @ ST (@] T=To3 1o T PO OP PO OUPTPUPRN 139

F Y@ €1 (@] 1= Ted (o] H PP OP PP OTOUPPUPRN 139

Y O I T o U = PP 140

ACT_LAUNCN_PAIGITIS ...ttt b ettt e et ettt e eh b e e bt e e ket e eab e e e abe e e beeeenbeeebeeebaeenane 141

A CT_CONFIG_PAIAIMS ...ttt ettt a b e e b et e b et e eh b e e bt e e be e e sab e e eabe e e beeeenbeeebeeebeeenane 141

ACI_DEVICE _PAIAITIS ...ttt h et b ettt e e ab e e e bt e e be e e ea bt e e b et et et e aab e e e abe e e beeennbeeebeeebeeenane 142

F Y O - =T == 0 < PSPPSR PRRPPON 142

ACT BUFFEI_PAIAIMS ...ttt ettt ea b e e bt e ekt e esab e e e be e e be e e enbeeebeeebeeenane 143

LN O =T 0o VA =T 10 TP PP RTOPPRPPOY 145

ACI_Programming_PAramS.........c.uui ittt ettt b e e et et e sab e e b e et e e e aab e e be e abe e e anbe e e abeeereeenane 146

ACI_PrOgOPLION_PAIAITIS.ceiteieiitie ettt h ettt ab e e bt et et e eab e e e b et e be e e sab e e eabeeebeeesnbessbeeebaeenane 148

A CT_FUNCHON_PAFAMS. ...ttt b ettt e ab e e e bt e e be e e ea bt e e b et e be e e sabeeeabeeebeeeanbeeebeeebeeenane 152

ACI_GaNgTEIMINALE_PAr8MSc..ueiitieeieieeitee ettt a bt e b ettt e e aabee s be e e be e e esbeeabeeebeeeasseeabeeeabeeesnbesabeeenbeeennne 154

ACT PSEALUS_PA@ITIS.....cciiitiiii ittt e e et e e e s e e e s s b e e e e s s n e e e e e sne et e e e ssnn e e e e aanreeeesannneeeeannnreeenannres 154

F O I S = U= 10 TP PP P OUROUPPUPRN 156

ACL GANGSIAIT _PAIAMS.eiieiiiiiiii ettt e e e e rs e e e s e e e e e sn e e e e e et e e e s snne e e e s nreeeesaneeeeennnnreeenannres 157

ACI_CONNECTHION_PAIAITIS......eiteieiiie ettt ettt ettt bttt e e a bt e e bt e e be e e aab e e eabe e e be e e eab e e ebe e e beeeanbeeebeeebeeenane 158
EXAM Pl S O US @ ittt h bttt b e e e ab e sa bt et et e nab e e sab e e b e e nan e e nabe e enne s

7 Control from NI LabVIEW

Command Line Control from LabVIEWooiiiioiee ettt sttt sb et enee e enee e 160

Control from LabDVIBEW WiIth DLLcouiiieiiiiiesie ettt sae et e saeesteesbeeteebeenteenneannesnee e 163

Part V Operating with Programmers 166

1 Inserting devicesto a programming SOCKETiiiuuiiiiiiiiieii e 166

2 AULO-deteCliNG the JEVICE . vt en e 166

3 Basic programming fUNCHONSoiiii e e e e 167

How to check if @deVIiCe iS DIANKooiiiiiiiiiiiciee ettt 167

© 2015 Phyton, Inc. Microsystems and Development Tools

Contents 7

HOW 0 EFAS@ @ UEVICE ..eeeieiiiiie ettt ettt ettt e e a bt e sab e e et et e rab e e sabeeenbe e e sabeesabeeennees 167
HOW tO PrOgram @ AEVICEooiiiiiiiiie ettt ettt e e s et s et e e et e e eab e e sabe e et e e sabeesaneeennees 167
How to load a file INtO @ DUFFEIoieiee e 168
How to edit information before programming.............ooei oo 168
How to configure the ChOSEN AEVICE.........ocuiiiiii e e 168
How to w rite information iNt0 the AEVICE..........cuiiiiiiii e 168

How to read adeviCecccevevvciveeecvieeee s
How to verify programming
How to save dataon adisc

HOW tO AUPIICALE B AEVICE ...eiiiiiiiiiie ettt ettt st et e e rab e st e e et e e e san e e sabeeennees
4 Programming NAND FIaSh MEMOIY ... 170
NAND Flash Memory arChitECTUIES ..ot 170
V7= [Tl o] (o T TSRS 172
Managing iNValid DIOCKScouiiiiiii e e 172
SKIPPING INVANA DIOCKS ...ttt 172
RESEIVEA BIOCK AT, ... ettt ettt ettt st sae et e s b e te e s bt e e e beanteeneesneeenee e 172
Error Checking @nd COMTECTHION.........ccuiiiiitiitiere sttt bbb et 173
INVANA BIOCK MAP......cvieiiieee et bbbttt sttt 173
Marking INValid DIOCKS...........couiiiiiiie e 174
Programming NAND Flash devices DY ChiPProg ... 175
F oo LT3 o T [PSSR 176
INValid BIOCK MBNAGEMENL........c.oiiiiiiiiiiit ettt b e bbbt 176
Spare Area Usage
Guard Solid Area.............
Tolerant Verify Feature.
Invalid Block INICALION OPLON.........cuiitiiiitiiiiiciee e et 178
ACCESS MOUE PAFAMELEISeeuiiiiiieiie ittt ettt ettt sttt sae e st e s bt e bt e bt emteen e e embeebeesneesbeenaeenbeeteenteeneen 178
(0T T g =T PP PUPRT TR PPPPRPON 179
1S To o N =T SR RS 179
Y= VLo =10 Tod (A T SRS 180
L O O =T <] . PSSR 180
Acceptable NUMDET Of EITOISciiiiiiieiee e 180
5 Multi- and Gang-ProgrammMing....... e eeeeee e e e e e e e e et e e e e e e e en e e e e e e e 181
The Program Manager WINTOWeieiiiiiie ettt sttt b ettt sae et e sbe e beesb e et e enesnnenane e 182
The Program Man@gGEr taD...........ccuiiiiieiii ettt sb e b e e ne e 183
The Options tab...................
The Statistics tab
B IN-SYStEM PrOgrammMiNg...co.u ettt e 186
Part VI References 187
I o) o Y TS ST: Vo L= T 187
ErrOr LOAA/ SAVE FIlE .ottt a et h et e bttt ettt ne e st enbe e beenbeenes 187
Error Addresses
[0] = =X RSP TRPP PP
Error cOmMmMand-liNe OPTION ..ooiiiiiiie ittt bbbttt ettt e e st enae et b ns 188
Error Programming OPTION oottt sa et bt e bt et et et e se e sat e beenae e beenaeebs 188
Error DLL
Error USB
Error programmer hardware

| e T a) (=T - | USRS PURR
= oY geTo Yok Lo [V] =14 To] 4 RSP TRPPPP
BT T OT BVICE oottt e e et e e e et e e e e et eee e ebbaeeeeaabeseeeeaasteeeeasbeseeaanbasaeeeassseeeeansteeeeesaseeeeens

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Device Programmers

[0T o T =T o3 o 3 PSSO PR PR 190
L= 0T 1 1 PSPPSR 190
AVAVZ U o 11 0 o OO P TP OPRPPP 191
A o] €= 1S o Y 1= 191
Operations With EXPrE@SSIONS ..ottt e et b e bbb eanes 191
Numbers
Examples of Expressions
G IS 1ol T o) = g Yo (U= U =
SIM PIE EXAM PIE it h et b ettt h e st h et bt eh ekt e e b e e bt e bt e bt bt enn et aan e e
Description

Built-in Functions
Built-in Variables

Difference between the Script and the C LanQUAGESoociriiiiiiieiiesiie ettt 197
Script Language Built-in Functions and Variables ... 198
4 In-System Programming for different deviCes..........coiiiiiiiiiiii 206
Specific of programming PICIMICTO ..o.eiiiiiiiiie ettt ettt e bt e e sbe e e s be e e s bt e e sbeeesneeeanns 206
Specific of programming AVR MICIOCONTIIOIEIS ..ottt 206
Specific of programming Atmel 8051 MiIiCrOCONTIOIEIS ..ot 207

Index 208

© 2015 Phyton, Inc. Microsystems and Development Tools

Introduction 9

1 Introduction

PhytéGn

ChipProg Device Programmers

User's Guide

ChipProg-481

ChipProg-G41
ChipProg-48
ChipProg-40
ChipProg-ISP

Copyright © 2005-2014, Phyton, Inc. Microsystems and Development Tools, All rights reserved

1.1 Terms and Definitions

Terms used in the document

Target device or Target

The device to be programmed by a programmer either in the programmer
socket or by an additional adapter or by a cable for in-system
programming.

Start and End Addresses
(of the Target device)

A range of the device physical memory for the programming operations
(Read, Write, Verify, etc.).

Device package or
Package

Mechanical characteristics of the target device; ChipProg programmers
enable operations on the devices packed in the DIP (DIL) packages with
no additional adapters as well as on most non-DIP packed devices,
including but not limited to the devices in the PLCC, SOIC, SSOP, TSOP,
SSOP, QFP, BGA, QNF and other packages.

Programming socket or
Programming ZIF socket
or ZIF socket

A socket installed on a programmer unit or on an adapter (see below) to
accommodate the target device for programming. All ChipProg models use
ZIF (or Zero Insertion Force) programming sockets that allow for the
temporary installation of the target device in the programmer site and
easily removing it after completing the programming procedure.%CPN%>-
40, ChipProg-48 and ChipProg-G41 are equipped with 40- and 48-pin ZIF

© 2015 Phyton, Inc. Microsystems and Development Tools

10

ChipProg Device Programmers

sockets allowing operation on any DIP-packed devices with different
numbers of leads and different widths and also connecting additional
adapters for programming devices in other packages.

Adapter or Package
adapter

A small transition board with dual-in-line rows of pins pluggable into the
programmer ZIF socket on the bottom side and with a package-specific
ZIF socket (TSOP, PLCC, etc.) on the top. The adapters for in-system
programming by means of the parallel programmers are implemented as
ribbon cables that connect to the target board via a special header. The
adapter boards can carry passive components (ZIF sockets, pins and
cables) and active components (drivers, latches, transistors, etc.).
Hundreds of Phyton brand adapters as well as third party adapters are
available to support devices in most types of mechanical packages.

File

In the ChipProg context the term file may represent: a) an image of
information on a PC hard drive or other media that is supposed to be
written into the target device’s physical memory or b) an image read out
from the target device and then stored on the disk or other media. Files in
a ChipProg can be loaded from and saved on a PC hard drive or CD.

Buffer or Memory buffer

A memory segment, physically assigned from the computer operational
memory (RAM), for temporarily storing, editing and displaying the data to
be physically written to the target device’s memory or read out from the
device. The program allows opening an unlimited number of buffers of any
size while it is not restricted by the computer memory.

Buffer layer or sub-layer

A buffer may have a few layers (in some topics also known as sub-layers)
that are defined by a particular architecture and memory model of the
target device. For example, for some microcontrollers one buffer can
include the code and data memory layers (see more details below).

Buffer size

The buffers may have different sizes from 128KB to 32GB each.

Buffer start address

The address to display the buffer contents from.

Checksum

An arithmetic sum of the data located within a specified part of the buffer
calculated by the programmer to control the data integrity. The program
enables different algorithms for the checksum calculation and enables
writing the checksum into a specified location of the target device.

Parallel or In-socket
programming

Operations on a device being placed into the programmer’'s ZIF socket or
into a programming adapter (opposite to the in-system programming
below).

ICP orin-circuit
programming

Programming devices mounted on the boards (in the user's equipment) via
special adapter-cable connecting the programmer to the target.

ISP or in-system
programming

Same as abowe. Programming devices mounted on the boards (in the
user's equipment) via special adapter-cable connecting the programmer
with the target.

© 2015 Phyton, Inc. Microsystems and Development Tools

Introduction 11

ISP Mode

Mode of the in-system programming that is usually defined by the
programming signals woltage or the ISP interface (JTAG, UART, SPI, etc.).
Distinct ISP modes are enabled for different target devices and more than
one mode may exist for one device.

ISP JTAG Mode

In-system programming via a JTAG interface.

ISP HV Mode

In-system programming that requires applying a relatively high woltage to
the target device, (12V for example).

Command Line mode

A method of the ChipProg control by means of interacting with a computer
program where the user issues commands to the program in the form of
successiwe lines of text (command lines).

Project

An integrated set of information that completely describes the target
device, properties of the data buffers, programming options and settings,
list of the source and destination files with all their properties, etc.. Each
project, that has its own unique name, can be stored and promptly
reloaded for immediate execution. Usually a user creates a project to work
with one type of device. Working with projects saves a lot of time for the
initial configuration of the programmer every time you start working with a
new device.

File - Buffer - Target structure
Buffers are intermediate layers between the data in files and the data in the target device. The
ChipProg enables no direct interaction between the files and target devices. All the file operations,
such as loading and saving files are applicable to the buffers only. All the physical manipulations with
the target device memory content pass through the buffers as well. This is a fundamental principle of
the programmer operations with data and devices.

Examples of the buffer's layer structures of different devices:

1. In the Intel 87C51FA microcontroller each opened buffer includes two layers: Code and

Encryption table.

2. In the Microchip PIC16F84 microcontroller each opened buffer includes three layers: Code, Data
EEPROM and Identifier locations.

Each buffer layer can be opened for watching or editing by clicking its tab on the top of the buffer

window.

1.2 System Requirements

To run ChipProgUSB and to control a ChipProg device programmers, you need an IBM PC-compatible
personal computer with the following components:

© 2015 Phyton, Inc. Microsystems and Development Tools

12

ChipProg Device Programmers

Pentium-V CPU or higher

At least one USB port

A hard drive with at least 200MB of free space

Microsoft Windows XP, Windows 7 and Windows 8 operating systems.

ChipProg Family Brief Description

ChipProg is a family of device programmers produced by Phyton, Inc. Microsystems and
Development Tools (hereafter Phyton). A current ChipProg portfolio includes several device
programmers that belong to the following functional groups:

Universal parallel programmers for engineering and small volume manufacturing

AD

e

ChipProg-481, ChipProg-48 and ChipProg-40 single-site device programmers are intended for
engineering and small volume manufacturing. These models allow operating on the devices before they
are installed in the equipment (parallel programming or in-socket programming) as well as on the devices
already installed in the user's equipment (the method known as In-System Programming, that uses
serial data transmission into the programmable device). ChipProg-48 and ChipProg-40 device
programmers are controlled by the ChipProgUSB software, a newer ChipProg-481 - by the
ChipProgUSB-01 software pack. Since both ChipProgUSB and ChipProgUSB-01 models has the
same user interface, control tools, etc. this document operates with the ChipProgUSB term applicable
to both software packages.

Universal parallel gang programmers for manufacturing

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Family Brief Description 13

\|
N

Discontinued

ChipProg-G41 and ChipProg-G4 (, discontinued in 2010-2011) four-site gang device programmers are
intended for mass production. The , ChipProg-G41 gang machine is based on four concurrently and
independently running ChipProg-481 device programmers. The ChipProg-481 is controlled by the
ChipProgUSB-01 software pack.

Universal in-system device programmers for engineering and manufacturing

The ChipProg-ISP is a low-cost device programmer for engineering, field senice and manufacturing.
Unlimited number of these device programmers can be driven from one PC and can run concurrently to
program multiple devices at a time. This device programmer works under control of the ChipProgUSB
software pack.

How to choose a right device programmer?

e ChipProg-40: the least expensive Phyton device programmer, intended for working with a limited
device list; it does not support PLDs.

ChipProg-48: truly universal yet inexpensive device programmer; may not be fast enough for NAND
programming.

ChipProg-481: truly universal device programmer: extremely fast, targeted to NAND memory
support.

ChipProg-G41: extremely fast 4-site device programmer for production; can be controlled remotely
from ATE.

ChipProg-ISP: inexpensive in-system programmer; multiple ChipProg-ISPs can be driven in the
gang mode.

See also.

© 2015 Phyton, Inc. Microsystems and Development Tools

http://phyton.com/htdocs/php/device_programmers/HowToChoose.php

14

ChipProg Device Programmers

2.1

ChipProg-481

The ChipProg-481 universal programmer can be effectively used for both engineering and low-volume
manufacturing. It supports in-socket and in-system programming of thousand of devices and has no
valuable limitations in supporting future devices. The unlimited future device support differs ChipProg-
481 from the simplified, much slower and less expensive ChipProg-40 model. The ChipProg-481 is
much faster than the ChipProg-48 model, especially on high density NAND and NOR flash memory
devices (~15-20 times faster).

The programmer has a 48-pin DIP ZIF socket that enables inserting any wide or narrow DIP-packed
devices with up to 48 leads without the necessity to use any additional adapters. Programming of other
devices requires the use of additional adapters available from Phyton and a few selected vendors. The
programmer has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”) and the
“Start” button for fast launch of the pre-programmed command chains. The palm-size programmer has a
wall-plugged power adapter that is not shown on the picture abowe.

Standard package contents:

One programmer unit

One power adapter 12V/1A+

One USB link cable

One CD with the ChipProgUSB-01 software

Optionally the package may include one or more programming adapters (if ordered with the programmer)
and a “QuickStart” printed manual. See also for more details:

Major features
Hardware characteristics

Software features

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Family Brief Description 15

2.1.1 Major features

1. Equipped with a 48 pin ZIF socket that allows insertion of the DIP-packed devices with the package
width from 300 to 600 mil (7.62 to 15.24 mm) and the number of leads up to 48 without additional
adapters.

. Links to a PC USB 2.0 compatible port, e.g. slower USB connection is also supported.

3. Provides fast programming; for example, completely writes a 1Gb NAND K9F1GO08UOA in 22 sec!

(~640 sec by ChipProg-48)

4. Can program target devices in the programmer ZIF socket as well as the devices installed in the

equipment (ISP mode).

5. An unlimited number of ChipProg-481 tools can be driven from multiple USB ports of one computer (or

via a USB hub) to provide concurrent programming of multiple devices of the same type.

6. Has a button for fast manual launch of any single operation or a bunch of operations.

7. Has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”).

N

2.1.2 Hardware characteristics

1. The programmer has a 48-pin ZIF socket with a lever that enables the insertion and clamping of any
DIP-packed devices with the package width from 300 to 600 mil (7.62 to 15.24 mm) and with the
number of leads up to 48.

2. Adapters for programming devices in the SDIP, PLCC, SOIC, SOP, PSOP, TSOP, TSOPII, TSSOP,
QFP, TQFP, VQFP, QFN, SON, BGA, CSP and other packages are available from Phyton and
selected third parties.

3. The programmer is built on the base of a very fast and productive 32-bit embedded microcontroller and

a FPGA. These resources allow adding new targets to the device list by a simple software update.

. Most timing-critical parts of the programming algorithms are implemented in the FPGA devices.

5. Implementation in the FPGA devices logical drivers enables outputting logical signals of any level (low,
high, Pullup, Pulldown and external clock generator) to any pin of the programming ZIF socket.

6. The programmers's hardware features 10-bit digital-to-analog converters for accurate settings of the
analog signals.

7. The programmers's hardware enables accurate programming of the rising and falling edges of the
generated analog signals.

8. The programmers's hardware automatically adjusts the generated analog signals in accordance to the
target device programming specifications.

9. The generated analog signals for both the target supplying and programming can be outputted to any
pins of the device being programmed.

10.The programmers's can connect any pin of the device being programmed to the “Ground” level.

11.The programmers's hardware checks if every pin of the target device is reliably fixed by a ZIF socket’s
contacts (“bad contact” checking).

12.The programmers's hardware protects itself and the target device against incorrect insertions and
other issues that cause a sharp increase in the currents though the target device circuits. This “over
current” protection is very fast and reliable.

13.The target device's pins are protected against the electrostatic discharge.

14.The programmers's hardware has a programmable clock generator.

15.The self-testing procedure automatically executes at any time the programmer is powered on.

N

2.1.3 Software features

1. The ChipProgUSB-01 software works under control of Windows XP, 7 (32- and 64-bit), 8.
2. Several methods of control are available: friendly and intuitive Graphic User Interface (GUI), Command
Line control, Remote Control via the Application Control Interface (the DLL), on-the-fly control are

© 2015 Phyton, Inc. Microsystems and Development Tools

16

ChipProg Device Programmers

2.2

included into the standard ChipProgUSB package.

3. Includes a set of basic commands: Blank Check, Erase, Read, Write, Verify, Lock, Set Configuration
Bits, Data Memory Support, etc., executed by a single mouse click.

4. Enables presetting a batch of the commands above executed one after one either by a manual start or
by a mouse click or automatically upon the device insertion into the programming socket.

5. Allows serialization of the programming devices with auto incrementing the device numbers and
storing a serialization log (in the Auto Programming mode only).

6. The program can calculate checksums of the selected data array and then write the checksum into a
specified memory location of the target device (in the Auto Programming mode only). Several
methods of the checksum calculation can be used.

7. The program allows writing a unique signature into a specified memory location of the target device for

the device identification (in the Auto Programming mode only).

. The project support speeds up and simplifies switching between different programming tasks.

9. The software allows pre-programming a particular operation (or a chain of operations), which is
supposed to be automatically triggered when the programmer hardware detects insertion of the target
device into the programming socket.

10. An unlimited number of memory buffers can be opened in the main ChipProgUSB-01 window.

11. The software supports a multiple programming mode for concurrent programming of the same type of
target devices on the same type of programmers connected to one computer. A number of single
device programmers connected to the programming cluster does not slow down the programming
speed.

12. The software includes a full-scale binary editor allowing manual modification of the data in buffers as
well as such helpful functions as Search and Replace, Fill, Compare, Copy, Invert, Calculate
Checksum, and OR, AND, XOR logical operations on the blocks of data.

13. Loading and saving files in several standard and proprietary formats: Binary, Standard Extended Intel
HEX, Motorola S-record, POF, JEDEC, PRG, Holtek OTP, ASCII HEC, ASCIl OCTAL, Angstrem
SAV. Special non-standard formats can be added upon request.

14. The software is featured by a script language and a mechanism of handling the script scenarios for
automation of the routine operations and chip replications.

[00]

ChipProg-G41

The ChipProg-G41 is a 4-site gang programmer based on four ChipProg-481 programming modules
enclosed in one case and driven from the ChipProgUSB-01 software. It is intended for middle- and low-
wlume manufacturing. It supports in-socket and in-system programming of thousand of devices and has
no valuable limitations for supporting future devices.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Family Brief Description 17

Standard package contents:

e One programmer unit

e One power cable

¢ One USB link cable

e One CD with the ChipProgUSB-01 software

Optionally the package may include one or more programming adapters (if ordered with the programmer)
and a “QuickStart” printed manual. See also for more details:

Major features
Hardware characteristics

Software features

2.2.1 Major features

1. Based on four ChipProg-481 programming modules enclosed in a metal case and connected to a PC
via an embedded USB hub.

. Allows independent and concurrent programming of up to four devices of the same type.

3. A few ChipProg-G41 units can be cascaded to allow programming on 8-, 12-, 16- and more sites
concurrently.

4. 48 pin ZIF sockets allow insertion of any DIP-packed devices with the package width from 300 to 600
mil (7.62 to 15.24 mm) and the number of leads up to 48 without additional adapters.

5. Links to a PC USB 2.0 compatible port via one link cable.

6. Provides fast programming; for example, completely writes a 1Gb NAND K9F1GO08UOA flash device in
22 sec!

7. Can program target devices in its socket as well as devices installed in the equipment (ISP mode).

8. Each programming site has a 'Start’ button for fast manual launch of any single operation or a batch of
operations.

9. Each programming site has three LEDs for displaying the programming status (“Good”, “Busy”,
“Error”).

N

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Device Programmers

18
2.2.2
1
2
2.2.3

Hardware characteristics

. Enclosed in a durable steel case to be used in an industrial environment.

. The tool gets power from a standard outlet 110-240V, 50-60 Hz.

3. Each programming site based on a single ChipProg-481 programmer has a 48-pin ZIF socket with a
lever that enables the insertion and clamping of any DIP-packed devices with the package width from
300 to 600 mil (7.62 to 15.24 mm) and with the number of leads up to 48.

4. Adapters for programming devices in the SDIP, PLCC, SOIC, SOP, PSOP, TSOP, TSOPII, TSSOP,
QFP, TQFP, VQFP, QFN, SON, BGA, CSP and other packages are available from Phyton and many
third parties.

5. Single ChipProg-481 programmers inside of the tool enclosure are connected to an embedded USB
2.0 hub

6. Each programming site is built on the base of a very fast and powerful 32-bit embedded

microcontroller and FPGA. These resources allow adding new targets to the device list by a simple

software update.

Software features

1. The ChipProgUSB-01 software works under control of Windows XP, 7 (32- and 64-bit), 8.

2. Several methods of control are available: friendly and intuitive Graphic User Interface (GUI), Command
Line control, Remote Control via the Application Control Interface (the DLL), on-the-fly control are
included into the standard ChipProgUSB package.

3. Includes a set of basic commands: Blank Check, Erase, Read, Write, Verify, Lock, Set Configuration
Bits, Data Memory Support, etc., executed by a single mouse click.

4. Enables presetting a batch of the commands above executed one after one either by a manual start or
by a mouse click or automatically upon the device insertion into the programming socket.

5. Allows serialization of the programming devices with auto incrementing the device numbers and
storing a serialization log (in the Auto Programming mode only).

6. The program can calculate checksums of the selected data array and then write the checksum into a
specified memory location of the target device (in the Auto Programming mode only). Sewveral
methods of the checksum calculation can be used.

7. The program allows writing a unique signature into a specified memory location of the target device for
the device identification (in the Auto Programming mode only).

8. The project support speeds up and simplifies switching between different programming tasks.

9. The software allows pre-programming a particular operation (or a chain of operations), which is
supposed to be automatically triggered when the programmer hardware detects insertion of the target
device into the programming socket.

10. An unlimited number of memory buffers can be opened in the main ChipProgUSB-01 window.

11. The software supports a multiple programming mode for concurrent programming of the same type of
target devices on the same type of programmers connected to one computer. A number of single
device programmers connected to the programming cluster does not slow down the programming
speed.

12. The software includes a full-scale binary editor allowing manual modification of the data in buffers as
well as such helpful functions as Search and Replace, Fill, Compare, Copy, Invert, Calculate
Checksum, and OR, AND, XOR logical operations on the blocks of data.

13. Loading and saving files in several standard and proprietary formats: Binary, Standard Extended Intel
HEX, Motorola S-record, POF, JEDEC, PRG, Holtek OTP, ASCII HEC, ASCIl OCTAL, Angstrem
SAV. Special non-standard formats can be added upon request.

14. The software is featured by a script language and a mechanism of handling the script scenarios for
automation of the routine operations and chip replications.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Family Brief Description 19

2.3 ChipProg-48

The ChipProg-48 universal programmer can be effectively used for both engineering and low-volume
manufacturing. It supports in-socket and in-system programming of thousand of devices and has no
valuable limitations in supporting future devices. The unlimited future device support differs ChipProg-48
from the simplified and less expensive ChipProg-40 model.

The programmer has a 48-pin DIP ZIF socket that enables inserting any wide or narrow DIP-packed
devices with up to 48 leads without the necessity to use any additional adapters. Programming of other
devices requires the use of additional adapters available from Phyton and a few selected vendors. The
programmer has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”) and the
“Start” button for fast launch of the pre-programmed command chains. The palm-size programmer has a
wall-plugged power adapter that is not shown on the picture abowve.

Standard package contents:

e One programmer unit

e One power adapter 12V/1A+

¢ One USB link cable

e One CD with the ChipProgUSB software

Optionally the package may include one or more programming adapters (if ordered with the programmer)
and a “QuickStart” printed manual. See also for more details:

Major features
Hardware characteristics

Software features

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Device Programmers

20
2.3.1
2
2.3.2
4
2.3.3

Major features

1. Equipped with a 48 pin ZIF socket that allows insertion of the DIP-packed devices with the package
width from 300 to 600 mil (7.62 to 15.24 mm) and the number of leads up to 48 without additional
adapters.

. Links to a PC USB 2.0 compatible port, e.g. slower USB connection is also supported.

3. Provides fast programming; for example, completely writes a 64M bit NOR FLASH in less than 50

sec.

4. Can program target devices in the programmer ZIF socket as well as the devices installed in the

equipment (ISP mode).

5. An unlimited number of ChipProg-48 tools can be driven from multiple USB ports of one computer (or

via a USB hub) to provide concurrent programming of multiple devices of the same type.

6. Has a button for fast manual launch of any single operation or a bunch of operations.

7. Has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”).

Hardware characteristics

1. The programmer has a 48-pin ZIF socket with a lever that enables the insertion and clamping of any
DIP-packed devices with the package width from 300 to 600 mil (7.62 to 15.24 mm) and with the
number of leads up to 48.

2. Adapters for programming devices in the SDIP, PLCC, SOIC, SOP, PSOP, TSOP, TSOPII, TSSOP,
QFP, TQFP, VQFP, QFN, SON, BGA, CSP and other packages are available from Phyton and
selected third parties.

3. The programmer is built on the base of a very fast and productive 32-bit embedded microcontroller and

a FPGA. These resources allow adding new targets to the device list by a simple software update.

. Most timing-critical parts of the programming algorithms are implemented in the FPGA devices.

5. Implementation in the FPGA devices logical drivers enables outputting logical signals of any level (low,
high, Pullup, Pulldown and external clock generator) to any pin of the programming ZIF socket.

6. The programmers's hardware features 10-bit digital-to-analog converters for accurate settings of the
analog signals.

7. The programmers's hardware enables accurate programming of the rising and falling edges of the
generated analog signals.

8. The programmers's hardware automatically adjusts the generated analog signals in accordance to the
target device programming specifications.

9. The generated analog signals for both the target supplying and programming can be outputted to any
pins of the device being programmed.

10.The programmers's can connect any pin of the device being programmed to the “Ground” level.

11.The programmers's hardware checks if every pin of the target device is reliably fixed by a ZIF socket’s
contacts (“bad contact” checking).

12.The programmers's hardware protects itself and the target device against incorrect insertions and
other issues that cause a sharp increase in the currents though the target device circuits. This “over
current” protection is very fast and reliable.

13.The target device's pins are protected against the electrostatic discharge.

14.The programmers's hardware has a programmable clock generator.

15.The self-testing procedure automatically executes at any time the programmer is powered on.

Software features

1. The ChipProgUSB software works under control of Windows XP, 7 (32- and 64-bit), 8.
2. Several methods of control are available: friendly and intuitive Graphic User Interface (GUI), Command
Line control, Remote Control via the Application Control Interface (the DLL), on-the-fly control are

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Family Brief Description 21

included into the standard ChipProgUSB package.

3. Includes a set of basic commands: Blank Check, Erase, Read, Write, Verify, Lock, Set Configuration
Bits, Data Memory Support, etc., executed by a single mouse click.

4. Enables presetting a batch of the commands above executed one after one either by a manual start or
by a mouse click or automatically upon the device insertion into the programming socket.

5. Allows serialization of the programming devices with auto incrementing the device numbers and
storing a serialization log (in the Auto Programming mode only).

6. The program can calculate checksums of the selected data array and then write the checksum into a
specified memory location of the target device (in the Auto Programming mode only). Several
methods of the checksum calculation can be used.

7. The program allows writing a unique signature into a specified memory location of the target device for

the device identification (in the Auto Programming mode only).

. The project support speeds up and simplifies switching between different programming tasks.

9. The software allows pre-programming a particular operation (or a chain of operations), which is
supposed to be automatically triggered when the programmer hardware detects insertion of the target
device into the programming socket.

10. An unlimited number of memory buffers can be opened in the main ChipProgUSB window.

11. The software supports a multiple programming mode for concurrent programming of the same type of
target devices on the same type of programmers connected to one computer. A number of single
device programmers connected to the programming cluster does not slow down the programming
speed.

12. The software includes a full-scale binary editor allowing manual modification of the data in buffers as
well as such helpful functions as Search and Replace, Fill, Compare, Copy, Invert, Calculate
Checksum, and OR, AND, XOR logical operations on the blocks of data.

13. Loading and saving files in several standard and proprietary formats: Binary, Standard Extended Intel
HEX, Motorola S-record, POF, JEDEC, PRG, Holtek OTP, ASCII HEC, ASCIl OCTAL, Angstrem
SAV. Special non-standard formats can be added upon request.

14. The software is featured by a script language and a mechanism of handling the script scenarios for
automation of the routine operations and chip replications.

[00]

2.4 ChipProg-40

The ChipProg-40 universal programmer can be effectively used for both engineering and low-volume
manufacturing. It supports in-socket and in-system programming of thousand of devices. The
programmer hardware has some limitations for supporting certain devices. It does not support any PLDs.
This is a difference between the cheaper ChipProg-40 and the enhanced ChipProg-48 model.

© 2015 Phyton, Inc. Microsystems and Development Tools

22 ChipProg Device Programmers
.';Ii.
i a0
“ewv
The programmer has a 40-pin DIP ZIF socket that enables inserting any wide or narrow DIP-packed
devices with up to 40 leads without the necessity to use any additional adapters. Programming of other
devices requires use of additional adapters available from Phyton and a few selected vendors. The
programmer has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”) and the
“Start” button for fast launch of the pre-programmed command chains. The palm-size programmer has a
wall-plugged power adapter that is not shown on the picture abowe.
Standard package contents:
¢ One programmer unit
¢ One power adapter 12V/1A+
¢ One USB link cable
¢ One CD with the ChipProgUSB software
Optionally the package may include one or more programming adapters (if ordered with the programmer)
and a “QuickStart” printed manual. See also for more details:
Major features
Hardware characteristics
Software features
24.1 Major features

1. Equipped with a 40 pin ZIF socket that allows insertion of any DIP-packed devices with the package
width from 300 to 600 mil (7.62 to 15.24 mm) and the number of leads up to 40 without additional
adapters.

. Links to a PC USB 2.0 compatible port, e.g. slower USB connection is also supported.

3. Provides fast programming; for example, completely writes a 64M bit NOR FLASH in less than 50

sec.

4. Can program target devices in the programmer ZIF socket as well as the devices installed in the

N

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Family Brief Description 23

equipment (ISP mode).

5. An unlimited number of ChipProg-40 tools can be driven from multiple USB ports of one computer (or
via a USB hub) to provide concurrent programming of multiple devices of the same type.

6. Has a button for fast manual launch of any single operation or a batch of operations.

7. Has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”).

2.4.2 Hardware characteristics

1. The programmer has a 40-pin ZIF socket with a lever that enables the insertion and clamping of any
DIP-packed devices with the package width from 300 to 600 mil (7.62 to 15.24 mm) and with the
number of leads up to 40.

2. Adapters for programming devices in the SDIP, PLCC, SOIC, SOP, PSOP, TSOP, TSOPII, TSSOP,
QFP, TQFP, VQFP, QFN, SON, BGA, CSP and other packages are available from Phyton and
selected third parties.

3. The programmer is built on the base of a very fast and productive 32-bit embedded microcontroller and
a FPGA. These resources allow adding new targets to the device list by a simple software update.

4. Most timing-critical parts of the programming algorithms are implemented in the FPGA devices.

5. Implementation in the FPGA devices logical drivers enables outputting logical signals of any level (low,
high, Pullup, Pulldown and external clock generator) to any pin of the programming ZIF socket.

6. The programmers's hardware features 10-bit digital-to-analog converters for accurate settings of the
analog signals.

7. The programmers's hardware enables accurate programming of the rising and falling edges of the
generated analog signals.

8. The programmers's hardware automatically adjusts the generated analog signals in accordance to the
target device programming specifications.

9. The generated analog signals for both the target supplying and programming can be outputted to any
pins of the device being programmed.

10.The programmers's can connect any pin of the device being programmed to the “Ground” level.

11.The programmers's hardware checks if every pin of the target device is reliably fixed by a ZIF socket’s
contacts (“bad contact” checking).

12.The programmers's hardware protects itself and the target device against incorrect insertions and
other issues that cause a sharp increase in the currents though the target device circuits. This “over
current” protection is very fast and reliable.

13.The target device's pins are protected against the electrostatic discharge.

14.The programmers's hardware has a programmable clock generator.

15.The self-testing procedure automatically executes at any time the programmer is powered on.

2.4.3 Software features

1. The ChipProgUSB software works under control of Windows XP, 7 (32- and 64-bit), 8.

2. Several methods of control are available: friendly and intuitive Graphic User Interface (GUI), Command
Line control, Remote Control via the Application Control Interface (the DLL), on-the-fly control are
included into the standard ChipProgUSB package.

3. Includes a set of basic commands: Blank Check, Erase, Read, Write, Verify, Lock, Set Configuration
Bits, Data Memory Support, etc., executed by a single mouse click.

4. Enables presetting a batch of the commands above executed one after one either by a manual start or
by a mouse click or automatically upon the device insertion into the programming socket.

5. Allows serialization of the programming devices with auto incrementing the device numbers and
storing a serialization log (in the Auto Programming mode only).

6. The program can calculate checksums of the selected data array and then write the checksum into a
specified memory location of the target device (in the Auto Programming mode only). Several

© 2015 Phyton, Inc. Microsystems and Development Tools

24

ChipProg Device Programmers

2.5

methods of the checksum calculation can be used.

7. The program allows writing a unique signature into a specified memory location of the target device for

the device identification (in the Auto Programming mode only).

. The project support speeds up and simplifies switching between different programming tasks.

9. The software allows pre-programming a particular operation (or a chain of operations), which is
supposed to be automatically triggered when the programmer hardware detects insertion of the target
device into the programming socket.

10. An unlimited number of memory buffers can be opened in the main ChipProgUSB window.

11. The software supports a multiple programming mode for concurrent programming of the same type of
target devices on the same type of programmers connected to one computer. A number of single
device programmers connected to the programming cluster does not slow down the programming
speed.

12. The software includes a full-scale binary editor allowing manual modification of the data in buffers as
well as such helpful functions as Search and Replace, Fill, Compare, Copy, Invert, Calculate
Checksum, and OR, AND, XOR logical operations on the blocks of data.

13. Loading and saving files in several standard and proprietary formats: Binary, Standard Extended Intel
HEX, Motorola S-record, POF, JEDEC, PRG, Holtek OTP, ASCII HEC, ASCIl OCTAL, Angstrem
SAV. Special non-standard formats can be added upon request.

14. The software is featured by a script language and a mechanism of handling the script scenarios for
automation of the routine operations and chip replications.

[e¢]

ChipProg-ISP

The ChipProg-ISP is an inexpensive universal device programmer for programming devices installed in
the equipment. This type of programming is known as “in-system” or “in-circuit” programming. The
ChipProg-ISP supports serial EPROM and EEPROM flash memory devices and embedded
microcontrollers with the code and data memory programmable via different types of serial ports: UART,
JTAG, SWD, SPI and other types, including proprietary interfaces.

The programmer has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”) and the
“Start” button for fast launch of the pre-programmed command chains. The tool shown on the picture is
very small and requires no power adapter for the operations - it gets power from the USB computer port.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Family Brief Description 25

Connecting ChipProg-ISP to the target

The programmer has a 14-pin output connector BH-14R. A variety of Phyton adapting cables allow
connecting to the target. A simple pin-to-pin ribbon cable AS-ISP-CABLE is supplied with the
programmer by default, and other cables (adapters) can be ordered on demand. The BH-14R connector
output information signals for the chip programming and some senice signals that enable using the
programmer in the automated programming and testing equipment. See the BH-14R pinout:

ChipProg-ISP BH-

14R connector Logical signal

1 Target specific*
2 Target specific*
3 Target specific*
4 Target specific*
5 Target specific*
6 Target specific*
7 Target specific*
8 Target specific*
9 GND

10 Target specific*
11 /Start

12 /Error

13 /Good

14 /Busy

Signals on the pins #1 to #9 and on the pin #10 are used for transmitting and receiving information and
synchro impulses to and from the target device. These signals are target specific and depend on the
type of target device or a family in general (AVR, PIC, etc.) - see here. They also are shown in the
adapters wiring diagrams; see the file adapters.chm included in the ChipProgUSB set.

The pin #9 must be connected to the target's ground.

The signals on the output pins #12, #13 and #14 represent the programmer statuses - logical '0' means
an active status, logical '1' - passive. E.g.:

/Error — the operation has failed,;
/Good — the operation completed successfully;
/Busy — the programmer is in a process of executing some operation.

An active signal on the input pin #11 (log.'0") starts the preset operation, the device programming by
default. Activation of this signal, e.g. a falling edge, is equivalent to pushing the "Start" button on the
programmer. See the diagram below:

© 2015 Phyton, Inc. Microsystems and Development Tools

http://www.phyton.com/catalog/programmers_and_adapters.asp#SpecialCblISP

26

ChipProg Device Programmers

251

T T T T T T T T T T T -
| ChipProg-I35P |
BUSY_LED (OPEM DRATIN) |
s D1 YELLOWY R1 1k
5v X A Sk | Busy
"ERROE" ERROR_LED {OPEN DRAIN] |
| D2 RED R2 1k
| ‘ P RE 1k | ERROR
| G000 LED {OFEN DRATH] |
“Go0D D3 GREEN R3 1k |
| Hz‘)" o R7 ik i GOOD
: 3.3V |
| |
| 15;* |
| START | INPUT) |
PE1 "START" |
| 1 .2 l o RE 1K START
| ALL ACTTVE STATES - 0 |
__________________ _

Read also In-System Programming for different devices.

Standard package contents:

One programmer unit

One universal ribbon cable wired pin-to-pin
One USB link cable

One CD with the ChipProgUSB software

Optionally the package may include one or more programming cable-adapters (if ordered with the
programmer) and a “QuickStart” printed manual. See also for more details:

Major features
Hardware characteristics

Software features

Major features

. Has a 14 pin socket for connecting to the target equipment by means of several cable-adapters.

. Protects itself and the target equipment against incorrect wiring.

. Links to a PC USB 2.0 compatible port, e.g. slower USB connection is also supported.

. An unlimited number of ChipProg-ISP tools can be driven from multiple USB ports of one computer (or
via a USB hub) to provide concurrent programming of multiple devices of the same type.

. Has a button for fast manual launch of any single operation or a batch of operations.

. Has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”).

A WNPFP

o U1

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Family Brief Description 27

252

253

Hardware characteristics

. Has a standard 14 pin connector.

. By default is supplied with a flat ribbon cable with dual headers - 10- and 14 pins.

. Optionally can be supplied with several cable adapters for programming specific device families.

. The programmer is built on the base of a very fast and productive 32-bit embedded microcontroller and

a FPGA device.
. Most timing-critical parts of the programming algorithms are implemented in the FPGA devices.
. Implementation in the FPGA devices logical drivers enable outputting logical signals of any level (low,
high, Pullup, Pulldown and external clock generator) to any pin of the programming connector.

7. The programmers's hardware features 10-bit digital-to-analog converters for accurate settings of the
analog signals.

8. The programmers's hardware enables accurate programming of the rising and falling edges of the
generated analog signals.

9. The programmers's hardware automatically adjusts the generated analog signals.

10.The generated analog signals for both the target supplying and programming can be outputted to any
pins of the device being programmed.

11. The programmers's hardware protects itself and the target device against incorrect connection.

12. The target device pins are protected against the electrostatic discharge.

13. Can be started from the external signal.

14. Three status signals “Good”, “Busy”, “Error” are outputted to the programmer connector for driving
ATE equipment.

15. The self-testing procedure can be executes at any time by request.

A OWDNPRP

o Ol

Software features

RN

. The ChipProgUSB software works under control of Windows XP, 7 (32- and 64-bit), 8.

2. Several methods of control are available: friendly and intuitive Graphic User Interface (GUI), Command
Line control, Remote Control via the Application Control Interface (the DLL), on-the-fly control are
included into the standard ChipProgUSB package.

3. Includes a set of basic commands: Blank Check, Erase, Read, Write, Verify, Lock, Set Configuration
Bits, Data Memory Support, etc., executed by a single mouse click.

4. Enables presetting a batch of the commands above executed one after one either by a manual start or
by a mouse click or automatically upon the device insertion into the programming socket.

5. Allows serialization of the programming devices with auto incrementing the device numbers and
storing a serialization log (in the Auto Programming mode only).

6. The program can calculate checksums of the selected data array and then write the checksum into a
specified memory location of the target device (in the Auto Programming mode only). Seweral
methods of the checksum calculation can be used.

7. The program allows writing a unique signature into a specified memory location of the target device for

the device identification (in the Auto Programming mode only).

. The project support speeds up and simplifies switching between different programming tasks.

9. The software allows pre-programming a particular operation (or a chain of operations), which is
supposed to be automatically triggered when the programmer hardware detects insertion of the target
device into the programming socket.

10. An unlimited number of memory buffers can be opened in the main ChipProgUSB window.

11. The software supports a multiple programming mode for concurrent programming of the same type of
target devices on the same type of programmers connected to one computer. A number of single
device programmers connected to the programming cluster does not slow down the programming
speed.

12. The software includes a full-scale binary editor allowing manual modification of the data in buffers as

well as such helpful functions as Search and Replace, Fill, Compare, Copy, Invert, Calculate

[0s]

© 2015 Phyton, Inc. Microsystems and Development Tools

28

ChipProg Device Programmers

Checksum, and OR, AND, XOR logical operations on the blocks of data.

13. Loading and saving files in several standard and proprietary formats: Binary, Standard Extended Intel
HEX, Motorola S-record, POF, JEDEC, PRG, Holtek OTP, ASCII HEC, ASCIl OCTAL, Angstrem
SAV. Special non-standard formats can be added upon request.

14. The software is featured by a script language and a mechanism of handling the script scenarios for
automation of the routine operations and chip replications.

© 2015 Phyton, Inc. Microsystems and Development Tools

Quick Start 29

3 Quick Start

This chapter includes the topics that describe:

How to install the ChipProgUSB software
How to install the ChipProg USB drivers

How to install the ChipProg hardware and to start up the ChipProg programmers of different type.

Itis highly recommended to read all the manual basic topics included in the chapters Graphical User
Interface and Operating with ChipProg programmers before starting to use the tool.

Itis assumed that you are an experienced user of MS Windows and basic Windows operations.

3.1 Installing the ChipProgUSB Software

Insert the distributive ChipProgUSB disc into a CD drive of your PC, click the Install ChipProgUSB button,
accept the license agreement and then follow the series of prompts that will lead you through the installation

process.

% Phyton ChipProgUSB Programmer ¥. 5.18.00 Installation

fl %2 Phyton ChipProgUSB Programmer v. 5.18.00 Installation i il

License Agreement

Please read the following license agieement carefully.

NOTICE -

Phyton, Inc. Microsystems and Development tools [hereafter Phyton) licenses the accompanying
zoftware to pou only upon the condition that you accept all of the terms contained in this license
agreement. Please read the terms carefully before continuing installation. as pressing the "yes" button
will indicate your aszent ta them. |f you do nat agree to these terms, please press the "'no’’ button to

exit install

% | acoept the terms of the license agiesment

€ | do not accent the tems of the license agresment

X Eii

Hl % Phyton ChipProgUSB Programmet v. 5.18.00 Installation 1 x|

Transfer Working Enviramnent fram Previously Installed Yersion

Setup has found that the following Phyton ChipPiogUSE Programmer wersions has been
already installed on this computer. T'ou may wish to transfer the working environment

from one of the installed versians. Click the ‘Details’ button for more information,

¥ Transfer working enviranment fram wersion:

518,00
& BT

Details. |

x Exit @ Back Mexst E:)

x Exit |

Uninstall Previously Installzd Yersion(z]

Setup has found that the following Phyton ChipProgUSB Programmer versions has been
already installed on this computer. ‘T'ou may wish to uninstall some of these versions.
Chaoose Phytan ChipPragUSE Programmer wersions ta uninstall before instaling version
5.18.00:

Mate: Yerzsion 51800 has been already installed

|l o on this computer and will be uninstalled.

™ 51700

© 2015 Phyton, Inc. Microsystems and Development Tools

30 ChipProg Device Programmers

% Phyton ChipProgUSB Programmer v. 5.18.00 Installation x|

Iristallation Folder

Please choose the folder to install Phyton ChipProgUSE Programmer below. I the folder specified does not
exist, it will be created

Folder.
’7 C:\Program Files\ChipPro; ol Browse | ‘
X Eut 4@ Back | Install (>

% Phyton ChipProgUSB Programmer v. 5.18.00 Installation 5]

Installation Progress

C:A\Program FilestChipPragl)SBY5_18_00%chipprogusb. htral

Diive space used: 8,704,564 Butes

12%

X Eit |

Phyton ChipProgUSB folder

At the end the installer will create a folder with ChipProgUSB tools' and documents' shortcuts:

J Quick Skark Manuals
Rt ChipProgUse On-Line Help
Al ChipProgUsE User's Guide (PDF)
[#ly FTOI USE Device Driver Installsr
Eg Phkon ChipProgld3E -- Gang Mode [Diagnostic Mode)
Eg Pheton ChipProgUSE -- Gang Mode
Eﬁ Phekon ChipProgUSE (Diagnostic Mode)
@ Pheton ChipProgUSE Demo
(& Phvton ChipProgUSE
[#} Phykon WEE site
[#l Prograrmming Adapters
[@] Rewvision History
@ Uninstall Phywton ChipProgUSE Programmer

The folder Quick Start Manuals includes links to PDF manuals in the destination folder where the

products has been installed.

The ChipProgUSB On-Line Help icon opens the programmer on-line Help document (.CHM).

The ChipProgUSB User's Guide icon opens a complete programmer user's guide in the PDF format.

The FTDI USB Device Driver Installer icon launches the utility allowing installing and uninstalling USB

drivers.

The Phyton ChipProgUSB -- Gang Mode (Diagnostic Mode) icon invokes the ChipProgUSB
executable file and starts operations on multiple ChipProg programmers connected to one computer in
the diagnostic mode. In the diagnostic mode the programmer works considerably slower than it works in
the working mode — do not use this mode unless Phyton required special diagnostic files for the

troubleshooting.

© 2015 Phyton, Inc. Microsystems and Development Tools

Quick Start 31

The Phyton ChipProgUSB -- Gang Mode icon invokes the ChipProgUSB executable file and starts
operations for the ChipProg -G41 gang device programmer or the ChipProg-48, ChipProg-40 and
ChipProg-ISP programmers working in a multiprogramming mode.

The Phyton ChipProgUSB (Diagnostic Mode) icon invokes the ChipProgUSB executable file and
starts operations for a single ChipProg-ISP programmer working in a single programming mode, e.g.
when one programmer works on one target device. In the diagnostic mode the programmer works
considerably slower — do not use this mode unless Phyton did not require special diagnostic files for the
troubleshooting.

The Phyton ChipProgUSB icon inwokes the ChipProgUSB executable file and starts operations for the
ChipProg-48, ChipProg-40 and ChipProg-ISP programmers working in a single programming mode.

The Phyton ChipProgUSB Demo icon invokes a demo version of the ChipProgUSB software that
allows evaluating the product without having the programmer's hardware.

The Phyton WEB site icon opens the www.phyton.com website in your favorite Internet browser.

The Programming Adapters icon opens the adapters.chm file that list all the Phyton programming
adapters with their short descriptions and wiring diagrams.

The Revision History icon opens the ChipProgUSB wersions history file.

The Uninstall Phyton ChipProgUSB Programmer icon starts a process of removing the ChipProgUSB
program from your computer.

3.2 Installing the USB Drivers

In a process of the ChipProgUSB software installation from a distributive disc the program installs the drivers
for the USB devices used in all types of the ChipProg programmers working under control of the Windows
XP, Windows 7 (both 32- and 64-bit versions) and Windows 8 Microsoft operating systems.

3.3 Hardware installation

It is a mandatory for you to use the original power adapter 12V/1A received with the ChipProg-40 or
ChipProg -48 programmer and an original power cord for the ChipProg-G41 gang programmer. Any
substitutions should be agreed to with Phyton. It is also highly recommended to use the USB link
cables received with the programmers.

© 2015 Phyton, Inc. Microsystems and Development Tools

http://www.phyton.com

32

ChipProg Device Programmers

331

The hardware installations for different programmer models vary. Select the topic to see:

e The ChipProg-48 hardware installation
e The ChipProg-40 hardware installation
e The ChipProg-G41 hardware installation
e The ChipProg-ISP_hardware installation

ChipProg-481

For the programmer to be used in a single-programming mode:

Powering the
programmer

Connecting to a PC

Starting up

Plug the power adapter to the ~110/240V outlet. Connect a plug of the
power adapters to the coaxial connector on the rear panel of the
programmers and make sure that the "Good" green LEDs on each of
them are on.

Connect the USB port of your PC to the USB connector on the rear panel
of the programmer by means of the USB cable. It is recommended to
connect the programmer to a USB slot on the computer main unit and do
not connect it through a USB hub, especially through a passive hub.

Start the Phyton ChipProgUSB-01 program; if the programmer passes
the startup test successfully the ChipProgUSB-01 main window will open
and you will be able to work with the tool.

For the programmers to be used in a multi-programming mode, e.g. connected to one

computer:

Powering the
programmers

Connecting the
programmers to a
cluster

Starting up

Plug the power adapters of each programmer to be connected in one
programming cluster to the 110/240V outlets. Connect plugs of the power
adapters to the coaxial connectors on the rear panels of all the
programmers and make sure that the "Good" green LEDs on each of
them are on.

Connect the USB ports of your PCs to the USB connectors on the rear
panels of the programmers by means of the USB cables. It's
recommended to connect the programmers to USB slots on the computer
main unit and do not connect them through a USB hub, especially
through a passive hub.

Start the Phyton ChipProgUSB-01 - Gang Mode program; if all the
programmers pass the startup test successfully the first dialog prompts
you to assign the number from one to N to each programmer included in
the cluster. To assign the number push a Start button on a top panel of
each programmer one by one. Then the ChipProgUSB-01 main window
will open and you will be able to work with the tool.

Read about the Multi-Programming mode.

© 2015 Phyton, Inc. Microsystems and Development Tools

Quick Start 33

3.3.2

3.3.3

ChipProg-G41

Powering the
programmer

Connecting to a PC

Starting up

ChipProg-48

Plug the power cord to a power connector on the rear panel of the
programmer, then plug an opposite site to the ~110/240V outlet. Make
sure that all four "Good" green LEDs on the programmer are on.

Connect a USB port of your PC to a USB connector on the rear panel of
the programmer by means of the USB cable. It's highly recommended to
connect the programmer to a USB slot on the computer main unit and not
connect it through a USB hub, especially through a passive hub. Use of
the passive USB hubs for connecting the ChipProg-G41 programmer is
not allowed.

Important! When you start the programmer first time wait for about
20 seconds to allow the USB driver to be setup. Then, every time
when you start the programmer, wait for 5...10 sec before
launching the ChipProgUSB-01 software.

Start the Phyton ChipProgUSB-01 - Gang Mode program; if all the
programmers pass the startup test successfully the first dialog prompts
you to assign the number from one to N to each programming site. To
assign the number push an appropriate Start button on a top panel of the
programmer one by one. Then the ChipProgUSB-01 main window will open
and you will be able to work with the tool.

For the programmer to be used in a single-programming mode:

Powering the
programmer

Connecting to a PC

Starting up

Plug the power adapter to the ~110/240V outlet. Connect a plug of the
power adapters to the coaxial connector on the rear panel of the
programmers and make sure that the "Good" green LEDs on each of
them are on.

Connect the USB port of your PC to the USB connector on the rear panel
of the programmer by means of the USB cable. It is highly recommended
to connect the programmer to a USB slot on the computer main unit and
do not connect it through a USB hub, especially through a passive hub.

Start the Phyton ChipProgUSB program; if the programmer passes the
startup test successfully the first dialog prompts you to choose one of the
programmers to work with: ChipProg-48, ChipProg-40 or ChipProg-ISP.
Select the ChipProg-48 and continue. The ChipProgUSB main window
will open and you will be able to work with the tool.

For the programmers to be used in a multi-programming mode, e.g. connected to one

computer:

© 2015 Phyton, Inc. Microsystems and Development Tools

34 ChipProg Device Programmers

Powering the Plug the power adapters of each programmer to be connected in one

programmers programming cluster to the 110/240V outlets. Connect plugs of the power
adapters to the coaxial connectors on the rear panels of all the
programmers and make sure that the "Good" green LEDs on each of
them are on.

Connecting the Connect the USB ports of your PCs to the USB connectors on the rear

programmersto a panels of the programmers by means of the USB cables. It's highly

cluster recommended to connect the programmers to USB slots on the computer
main unit and do not connect them through a USB hub, especially
through a passive hub.

Starting up Start the Phyton ChipProgUSB - Gang Mode program; if all the
programmers pass the startup test successfully the first dialog prompts
you to assign the number from one to N to each programmer included in
the cluster. To assign the number push a Start button on a top panel of
each programmer one by one. Then the ChipProgUSB main window will
open and you will be able to work with the tool.

Read about the Multi-Programming mode.
3.3.4 ChipProg-40

For the programmer to be used in a single programming mode, e.g. alone:

Powering the Plug the power adapter to the ~110/240V outlet. Connect a plug of the
programmer power adapter to the coaxial connector on the rear panel of the

programmer and make sure that the "Good" green LED on the
programmer is on.

Connecting to a PC Connect a USB port of your PC to a USB connector on the rear panel of
the programmer by means of the USB cable. It's highly recommended to
connect the programmer to a USB slot on the computer main unit and not
connect it through a USB hub, especially through a passive hub.

Starting up Start the Phyton ChipProgUSB program; if the programmer passes the
startup test successfully the first dialog prompts you to choose one of the
programmers to work with: ChipProg-48, ChipProg-40 or ChipProg-ISP.
Select the ChipProg-40 and continue. The ChipProgUSB main window
will open and you will be able to work with the tool.

For the programmers to be used in a multi-programming mode, e.g. connected to one
computer:

© 2015 Phyton, Inc. Microsystems and Development Tools

Quick Start 35

Powering the
programmers

Connecting the
programmers to a
cluster

Starting up

Plug the power adapters of each programmer to be connected in one
programming cluster to the 110/240V outlets. Connect plugs of the power
adapter to the coaxial connectors on the rear panels of all the
programmers and make sure that the "Good" green LEDs on each of
them are on.

Connect USB ports of your PCs to USB connectors on the rear panels of
the programmers by means of the USB cables. It's highly recommended
to connect the programmers to USB slots on the computer main unit and
not connect them through a USB hub, especially through a passive hub.

Start the Phyton ChipProgUSB - Gang Mode program; if all the
programmers pass the startup test successfully the first dialog prompts
you to assign the number from one to N to each programmer included in
the cluster. To assign the number push a Start button on a top panel of
each programmer one by one. Then the ChipProgUSB main window will
open and you will be able to work with the tool.

Read about the Multi-Programming mode.

3.3.5 ChipProg-ISP

For the programmer to be used in a single programming mode, e.g. alone:

Connecting to a PC

Starting up

Connect a USB port of your PC to a USB connector on the rear panel of
the programmer by means of the USB cable. Make sure that the "Good"
green LED on the programmer is on. It's highly recommended to connect
the programmer to a USB slot on the computer main unit and not connect
it through a USB hub. Use of the passive USB hubs for connecting the
ISP programmers is not allowed.

Start the Phyton ChipProgUSB program; if the programmer passes the
startup test successfully the first dialog prompts you to choose one of the
programmers to work with: ChipProg-48, ChipProg-40 or ChipProg-ISP.
Select the ChipProg-ISP and continue. The ChipProgUSB main window
will open and you will be able to work with the tool.

For the programmers to be used in a multi-programming mode, e.g. connected to one

computer:

© 2015 Phyton, Inc. Microsystems and Development Tools

36 ChipProg Device Programmers

Connecting the Connect USB ports of your PCs to USB connectors on the rear panels of
programmersto a the programmers by means of the USB cables. Make sure that the
cluster "Good" green LEDs on all the programmers are on. It's highly

recommended to connect the programmers to USB slots on the computer
main unit and not connect them through a USB hub. The ChipProg
programmers get power from the computer's USB port; that is why it's
important not to overload the ports. Use of the passive USB hubs for
clustering the ISP programmers is not allowed.

Starting up Start the Phyton ChipProgUSB - Gang Mode program; if all the
programmers pass the startup test successfully the first dialog prompts
you to assign the number from one to N to each programmer included in
the cluster. To assign the number push a Start button on a top panel of
each programmer one by one. Then the ChipProgUSB main window will
open and you will be able to work with the tool.

Read about the Multi-Programming mode.
3.4 Getting Assistance

3.4.1 On-line Help

The ChipProgUSB software has a pretty comprehensive context-sensitive on-line Help. To access it press
the F1 key or use the Help menu. Aimost every ChipProgUSB dialog, message boxand menu has its own
context-sensitive help, which can be invoked for the active dialog or menu by pressing FL1.

In most cases you can find the necessary topic by searching for a keyword. For example, if you type "Verify'
in the first box of the Find tab, the third box will list the topics related to the programming verification.
Choose an appropriate topic from this listand press Display.

3.4.2 Technical Support

During a product’s warranty period Phyton provides technical support free of charge. Though we have been
selling the ChipProg programmers for many years the product software may contain minor bugs and some
programming algorithms may not be stable on some of the supported devices. We kindly ask you to report
bugs when you get an error message or have a problem with programming a particular device or devices.
We commit to prompt checking of your information and fixing the detected bugs.

To minimize difficulties operating with ChipProgUSB itis highly recommended to get familiar with the
manual before using the programmer. The ChipProgUSB - user interface is quite standard and intuitive,
however itincludes some specific functions and controls that the user should learn about.

Before contacting Phyton
e Make sure that you use the latest ChipProgUSB version that is always available for free download from
the http:/Awww.phyton.com.
e Make sure the detected error can be reproduced in the same working environment and is not a casual
glitch.
When contacting us
Please, provide our technical support specialists with the following information:
* Your name, the name of your company, your contact telephone number and your e-mail address.

¢ Name of the ChipProg model and its serial number, if one exists.
¢ Date of purchase, the Phyton invoice number, if available.

© 2015 Phyton, Inc. Microsystems and Development Tools

Quick Start 37

Software version number taken from the About information box.

Basic parameters of your computer and operating system.

The device type, mechanical package and the type of the adapter if one is used.
Descriptions of detected errors, relevant bug reports and error screen shots.

Please send your requests or questions to support@phyton.com. This is the easiest wayto get
professional and prompt help. Also, see Contact Information.

3.4.3 Contact Information

Phyton Inc., Microsystems and Development Tools

7206 Bay Parkway, 2nd floor
Brooklyn, New York 11204
USA

Web address: www.phyton.com

E-mail contacts:

General inquiry: info@phyton.com
Sales: sales @phyton.com
Technical Support: support@phyton.com

Tel: 1-718-259-3191
Fax: 1-718-259-1539

4 ChipProg Control Options

ChipProg device programmers can be controlled either from a personal computer or remotely from
Automatic Test Equipment (ATE) or any proprietary computerized environment connected to a PC
directly driving a single ChipProg device programmer a gang programmer or a programming cluster
comprised on multiple ChipProg units. Driving a ChipProg programmer (or multiple programmers) from a
PC can be provided via a friendly and intuitive Graphic User Interface, Command Line or by
launching Script Files. Driving a ChipProg programmer (or multiple programmers) remotely can be done
via the DLL supplied with the ChipProgUSB software.

© 2015 Phyton, Inc. Microsystems and Development Tools

mailto:support@phyton.com
http://www.phyton.com
mailto:info@phyton.com
mailto:sales@phyton.com
mailto:support@phyton.com

38

ChipProg Device Programmers

4.1

411

Graphical User Interface

The ChipProgUSB and ChipProgUSB-01 graphical user interface (GUI) elements include:

Menus - global and local
Windows
Toolbars - global and local

Setting Dialogs

Hot Keys

Context-sensitive help prompts

The GUI is featured with several useful additions specifically created for the ChipProg operations.

To make your operations with the ChipProgUSB and ChipProgUSB-01 programs easier we highly
recommend to learn the chapters Menus and Windows in full. You will be able to use the ChipProg device
programmers much more effectively.

User Interface Overview

ChipProgUSB features the standard Windows interface with several useful additions:

1. Each window has its own local menu (the shortcut menu). To open this menu, click the right mouse

button within the window area or press Ctrl+Enter or Ctrl+F10. Each command in the menu has a hot
key shortcut assigned to the Cirl+<letter> keys. Pressing the hot key combination in the active window
executes the corresponding command.

2. Each window has its own local toolbar. The window’s toolbar buttons give access to most of the

window’s local menu commands. The specialized window toolbar buttons operate only within the
specialized window. The main ChipProgUSB window has several toolbars that can be turned on or off
(in the Environment dialog, the Toolbar tab).

3. Each toolbar button has a short prompt: when you place the cursor over a toolbar button for two

seconds, a small yellow box appears nearby with a short description of the button’s function.

4. To save screen space, you can hide anywindow’s title bar. To do this, use the Properties command of

the local menu. You can identify the ChipProgUSB windows by their contents and position on the
screen (and, if you wish, by color and font). When the title bar is hidden, you can move the window as if
the toolbar were the title bar: place the cursor on the free space of the toolbar, press the left mouse
button and drag the window to a new position.

5. You can open any number of windows of the same type. For example, you can open several Buffer

windows.

6. Everyinput text field of any dialog box has a historylist. ChipProgUSB saves them when you close a

development session. Then a previously entered string can be picked from the history list.

7. All input text boxes in the dialogs feature automatic name completion.

8. All check boxes and radio buttons in the dialogs work in the following way: a double-click on the check

boxor radio button is equivalent to a single click on the box or button, followed by a click on the OK
button. This is convenient when you need to change only one option in the dialog and then close it.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 39

412 Toolbars

The ChipProgUSB program opens a few toolbars on top of the main window (see below).

7% ChipProg-48 [Spavsion SZ9AL008hoio®2] -- Demunstration EIE]]

File View Project Configure Commands Scripts Window Help

EB-U5D € < |3 5 A | Check Program Verify Read Erase Auto
msglecf Device | Spansion S238L008)xBx:02 || O AutoDetect

D H B S BB EREET R e || R

The top line, shown right under the ChipProg main window title, includes the Main menu submenus. A
second line under the Main menu line displays icons and buttons of most frequently used commands on
files and target devices (Open project, Load file, Sawe file... Check, Program, Verify, etc.). There is an
indicator of the ChipProgUSB status (Ready, Wait, etc.). The third line displays a target device selector.
The fourth line, which is not displayed by default, includes an embedded editor options and commands
for scripts. The default toolbars can be customized. Read also the topics: The Configure Menu, The
Environment dialog, Toolbar.

Besides the toolbars positioned on a top of the main window, each particular window has its own local
toolbar with the buttons presenting the most popular commands associated with the window. See for
example the Buffer window's toolbar below.

Buffer #0 - Code (1 MB}, words: 00000000 [00000000] EIETEI]

| Code %
Acldr | Load | Save |C|:|nfin:1ure Eiuffer| Setup | Wiew Mcldifﬂ Block |

File: More [~
Checkzum: FFFE0000 1

noaoooon: FFFF FFFF FFFF FFFF FFFF FFFF |

41.3 Menus

The ChipProgUSB Main menu bar includes the following pull-down sub-menus:
e FHle menu

e View menu

* Project menu

* Configure menu

e Commands menu

e Scripts menu

e Window menu

e Help menu

To access these menus, use the mouse or press Alt+letter, where "letter" is the underlined character in
the name of the menu item.

© 2015 Phyton, Inc. Microsystems and Development Tools

40 ChipProg Device Programmers

4.1.3.1 The File Menu

The File menu's commands control the file operations. For those commands that have a toolbar button,
the button is shown in the first column of the table below. If there is a shortcut key for a command, the
shortcut keyis shown at the right of the command in the menu.

Button

£

Command

Load ...

Reload

Save...

Configuration Fles

Exit

Description

Opens the Load file dialog that specifies all the parameters of the
file to be loaded and the file destination.

Reloads the mostrecently loaded file.

Saves the file from the currently active window to a disk. Opens
the Save file from buffer dialog.

Gives access to operations with configuration files.

Closes ChipProgUSB. Alternatively, use the standard ways to
close a Windows application (the Alt+F4 or Alt+X keys
combination).

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 41

4.1.3.1.1 Configuration Files

On exit ChipProgUSB automatically saves its configuration data in several configuration files with the
name UPROG. On start, it restores its configuration from the last saved configuration files. In addition, you
can save and load any of these files at anytime using the Configuration FHles command of the File menu.
You can have several sets of configuration files for different purposes.

* The Desktop file contains data about the display options and the screen configuration, and the
positions, dimensions, colors and fonts of all the opened windows. The extension of this file is .dsk.
The default file name is UPROG.dsk.

® The Options file stores the target device type, file options, etc. The extension of this file is .opt. The
default file name is UPROG.opt.

® The Session file, which stores session data and specifies the desktop and options; it can also be
saved and loaded by means of the Save session or Load session sub command of the Configuration
Fles command. The extension of this file is .ses. The default file name is UPROG.ses.

® The History file, which contains all the settings entered in the text boxes of all the ChipProgUSB
dialogs. This file is hidden from users, but the settings stored earlier are available for prompt pick up
from the Historylists. The extension of this file is .hst. The default file name is UPROG.hst.

4,1.3.2 The View Menu

This menu controls access to the ChipProgUSB windows:

Command Description
Button
Q Program Opens the Program Manager dialog.
i Manager
Device and Opens the Device and Algorithm Parameters dialog.
TLis Algorithm
Parameters

Buffer Dump Opens the Buffer dialog.

Device Opens the Device Information dialog.
Information

Console Opens the Console dialog.

E 5

Local window menus

Each window has its own local (shortcut) menu. To open a local window menu, either click the right
mouse button within the window or press Ctrl+Enter or Ctrl+F10.

© 2015 Phyton, Inc. Microsystems and Development Tools

42 ChipProg Device Programmers

Most, but not all, of the local menu commands are duplicated by local toolbar buttons that are usually
displayed at the top of every window.

4.1.3.3 The Project Menu

This menu contains commands for working with projects.

Button Command Description

ﬁ New Opens the Project Options dialog.

ﬁ Open Opens the Open Project dialog for loading an existing project file.
ﬁ Close Saves and closes a currently opened project.

ﬁ Save Saves a currently opened project with all its settings.

Save As Opens the Save project dialog. Duplicating projects under different
names and/or in different folders is helpful for cloning similar
projects.

Repository Opens the Project Repository dialog for storing a current projectin

5 a special data base for convenient handling.
@ Options Opens the Project Options dialog for the project options editing.

Note! The ChipProgUSB software does not automatically save changes of the project options upon
quitting the program. You must execute the Save or Save as command from the Project menu to
preserve project changed made in all user interface setting dialogs since opening this project.

4.1.3.3.1 The Project Options Dialog

This dialog is used for initial setting and editing the project options.

Element of dialog Description

Specifies the project file name and path. The extension may be omitted.
when you close the dialog by clicking the OK button the program save the
project file with the extension .upp.

Project Fle Name

Permissions... Opens the Editing Permission Settings dialog. Here you can protect the
project file against unauthorized editing. By checking appropriate boxes in
this dialog you can lock major groups of project options.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 43

Project Description Here you can enter your custom comments for the project.
(optional)

Two radio buttons which allow you to choose if a current project has its
own desktop or if all ChipProgUSB projects will use the same desktop
settings.

Desktop

Files to Load to Buffers File or list of files to be loaded into the buffers upon opening the

project.

Add file Opens the Load File dialog for adding this file to the Files to Load to
Buffers.

Remove file Remove the selected file from field Files to Load to Buffers.

Opens the Load File dialog for editing a file highlighted in the Fles to Load

Edit file options to Buffers list.

Script to execute before Here you can enter the script name to be executed before loading the

loading files: files to the project.
Script to execute after Here you can enter the script name to be executed after loading the files
loading files: to the project.

The dialog should be completed by clicking the OK button. Then a specified project file with the extension
.upp will appear in a specified folder.

4.1.3.3.2 The Open Project Dialog

This dialog is used to open a previously created project.

Element of dialog Description

Here you can type in a full path to the project file name or to browse for the
project file to be open. The ChipProgUSB project files have extensions .upp.

Project Fle Name

Lists previously opened projects. Double-clicking a line in the listopens a

Project Open History corresponding project.

Remove from list Deletes a selected project from the Project Open History list.

4.1.3.3.3 Project Repository

The Project Repository is a small database that stores records with links to the project files. Here
you can see the ChipProg projects in a tree form similar to the Windows File Explorer, to sort and
group the projects as needed for better presentation and convenient access. Operations with the
repository do not change the project files themselves - the repository works only with records about
the projects (links to the project files). A tree branch may show projects and other branches. Any
branch may contain different projects with the same names. Different branches may contain links to
the same project.

To open the Project Repository tree with associated commands call the Repository command of
the Project menu. Each tree branch displays the name of a particular project file (without a path) and
the project description shown in square brackets. The ChipProgUSB remembers the state of the tree

© 2015 Phyton, Inc. Microsystems and Development Tools

44 ChipProg Device Programmers

branches (expanded / collapsed) and restores it next time you open the dialog.

When you install a new version of the ChipProgUSB software and copy the working environment from
the previously installed version, the new version will inherit the existing project repository (the
repos.ini file).

Element of dialog Description

Add New Branch Opens the Add New Branch dialog in which you can specify the name
of a new branch.

Add a Project to Branch Opens the Open Project dialog to select a project to be added. Clicking
the Open button adds the selected project to the selected branch.

Add Current Project to Adds the currently opened project to the selected branch.

Branch

Remove Project/Branch Deletes the selected project or branch from the repository. All the child
branches will be also deleted.
When deleting a project from the repository, the ChipProgUSB deletes
only the repository record about the project, and does not delete the
project from the disc.

Edit Branch Name Opens the Edit Branch Name dialog for the selected branch.

Move Up Moves a selected project or branch up within the same level of
hierarchy. The branch moves together with all its child branches .

Move Down Moves the selected project or branch down within the same level of
hierarchy. The branch moves together with all its child branches .

Save Repository Writes or updates the repository to the disc file repos.ini in the
ChipProg working folder.

Browse Project Folder Opens MS Windows Explorer with the opened folder of the selected
project.

Open Project Writes the repository to the disk file and opens a selected project.

Close Closes the dialog. If the repository is changed, ChipProgUSB will

promptto save it.

4.1.3.4 The Configure Menu

This menu gives access to all the ChipProgUSB configuration dialogs.

Button Command Description

% Select device ... Opens the Select Device dialog.
Device selection Lists the previously selected devices.
history

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 45

ﬁ Buffers Opens the Buffers dialog.
Serialization, Opens the Serialization. Checksum, Log Fle
Checksum, Log
file
i Preferences Opens the Preferences dialog.
i
— Environment Opens the Environment dialog with tabs: the Fonts tab, the
E}_l Colors tab, the Key Mappings tab, the Toolbar tab and the
Misc tab.

4.1.3.4.1 The Select Device dialog

The dialog allows specification of the device to work with; it has a few groups of settings.

Element of dialog Description

In this field you can check the box or boxes to specify the target
device type. All the devices are divided in three functional groups: a)
EPROM, EEPROM, FLASH; b) PLD, PAL, EPLD; c)
Microcontrollers - check one, two or all three boxes. Two check
boxes below specify a method of programming - in the programmer
socket or in the target system - some devices can be programmed
in either way, some only in one certain way.

Devices to list:

It is recommended to narrow down the searchable database and
speed up the search by specifying the device properties if possible.

Manufacturer The box lists the device manufacturers in alphabetic order.

Here you can enter a mask to speed up the device search. The
character *' masks any number of any characters in the device part
number. For example, the mask 'PIC18*64" will bring up all the
PIC18 devices ending with the '64'".

Search mask:

The file displays all the devices for a chosen manufacturer that

Devices o e) .
match to the search criteria specified in the Devices to list, Search
mask and Packages/Adapters fields.

Packages/Adapters This field lists all types of the choseq device's mechanlc_al packages
that can are supported by the the ChipProg and appropriate
adapters.

4.1.3.4.2 The Buffers dialog
Element of dialog Description

Displays names, sizes and sub-layers of all currently open buffers

Buffer list:

© 2015 Phyton, Inc. Microsystems and Development Tools

46

ChipProg Device Programmers

Add...
Delete
Edit...

View

Memory Allocation

Swap Fles

Use network drives

Amount of space to leave
free on each drive (GB):

4.1.3.4.2.1 The Buffer Configuration dialog

Opens the Buffer Configuration dialog to create a new buffer

Deletes the buffer highlighted in the '‘Buffer list' box.

Opens the Buffer Configuration dialog for editing.

Switches control to window displaying the buffer highlighted in the
‘Buffer list' box. If this window is hidden under others it will be
brought to the foreground.

This drop down menu allows limiting the memory size allocated from
the computer RAM to each buffer. The free memory currently
available for the allocation is shown here in this screen area.

If the RAM space is limited the ChipProgUSB can use some space
on the PC drives by temporary writing the buffer image to the drive.
You can select the drive or allow the program to swap the files
automatically.

Checking this box enables you to swap files on the network drives
connected to your computer.

Here you can limit the space on the drive which will be never
affected by the file swapping.

The Buffer Configuration dialog allows the setup of sub-layers in the buffers and to make their
presentation easier to work with.

The dialog includes as many tabs as number of sub-layers exist for a particular device. Every buffer
has at least one main layer, so the tab '‘Code’ is always displayed on the dialog foreground. If a
chosen device has other address spaces (‘Data’, 'User', etc.) the buffer has additional sub-layers
available for setting up by clicking the appropriate tabs.

The tab opens the dialog for configuring the main buffer layer - the 'Code’ layer.

Here you can type in a name for the buffer or pick it from the history
list. By default the first opened buffer gets the name "Buffer #0".
Then you can open the "Buffer #1", etc. or give the buffer any name
you wish.

Buffer Name

Size of sub-layer 'Code’

Fll sub-layer 'Code' with
data:

Here you can assign a size of the 'Code' layer from the drop-down
menu - from 128KB to 32MB.

The program fills the buffer sub-layers with some default information,
usually by the 'FF's or zeros. By checking these boxes you specify
when the layer 'Code’ should be filled with the default information -

before loading the file or right after the device type has been chosen.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 47

Data to fill sub-layer with: These _two toggled radiq buttong define if.the sub-layer 'Code’ Wi|_| be
filled with some default information, specific for the selected device,
or by the custom bit pattern.

Shrink buffer size when The buffer size usually exceeds the target device 'Code’ size. By

device is selected checking this box you downsize the buffer to match the target
device and to free some computer memory.

The tab opens the dialog for presetting the buffer sub-layers.

Fill sub-level 'ID location' By checking these boxes you specify when the chosen sub-layer
with data: should be filled with the default information - before loading the file or
right after the device type has been chosen..

These two toggled radio buttons define if the chosen sub-layer will
be filled with some default information, specific for the selected
device, or by the custom bit pattern..

Data to fill sub-level with:

4.1.3.4.3 The Serialization, Checksumand Log dialog

The dialog allows writing serial numbers, unique signatures, checksums and user-specified
information into the target device memory and logging a process of the mass production device
programming.

Important Notice!

All the functions available with these dialogs: Serialization, writing in Checksums,
Signatures, etc.
work ONLY when you use the Auto Programming mode for mass production.

Concept of shadow areas

Shadow areas are special memory locations that do not belong to the buffer; they locate in a separate
part of the computer's RAM. The content of the shadow areas that may include: individual chip serial
numbers, the buffer checksums, special signatures, constancies, etc., is not specified in the source
file loaded to the buffer. It can be set either manually in the ChipProg user interface or remotely via the
Application Control Interface. There are several shadow areas for each buffer layer - three for dedicated
parameters: Serial Number, Checksum, and Signature String plus multiple Custom Shadow Areas can
be specified in this dialog. Tabs of the dialog below enable manually setting the parameters and
methods of their calculation:

© 2015 Phyton, Inc. Microsystems and Development Tools

48 ChipProg Device Programmers

Serialization, Checksum, Log File ! i 21

General | Serial Mumber | Checksum | Signature Sting | Custom Shadow .-'f-.reasl Log FiIeI

I lzing Serialization

= Dizcard zerial numbers of defective devices. In thiz mode senal numbers of the device yield
mal inclide gaps in the sequence of numbers written into zucceszsfully programmed devices.

|f & programming operation failz, discard the device but keep incrementing zenial numbers [in
" accordance with the 'Seral Number' dialog's sethings). [n this mode, serial numbers of the
device yield are always reprezented by continuouzly increazing sequence, i.e. without gapz.

General
Serial Number
Checksum

Signature String

Custom Shadow Areas

Log File

When one launches the Program a command the ChipProgUSB merges: a) the data loaded to buffers
and b) special data set in the shadows areas and then writes the merged data array into the target
memory device. If some addresses of the merged data overlap each other then the data taken from the
shadow areas overwrite ones taken from the memory buffer and the merged data physically mowve to
the target device memory.

4.1.3.4.3.1 General settings

The tab opens the dialog allowing to handle serialization of the devices failed in a process of the device
programming. There are two options (see below in the picture below):

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 49

Serialization, Checksum, Log File

General | Serial Mumber | Checksum I Signature String | Custom Shadow Areas | Log File |

Jed

— zing Senalization

= Dizcard zerial numbers of defective devices. In thiz mode zenal numbers of the device yield
may include gaps in the sequence of numberz witten into succezsfully programmed devices.

[f & programming operation fails, dizcard the device but keep incrementing zerial numbers [in
" accordance with the 'Senal Mumber' dialog's settings]. In this mode, senal numbers of the
device vield are always reprezented by continuouzly increazing sequence, i.e. without gapz.

4.1.3.4.3.2 Device Serialization

The Serial Number dialog tab specifies a procedure of assigning a unique number to each single
device belonging to a series of devices being programmed. By default serial numbers starts from O,
increments by 1 and are displayed as a byte.

Element of dialog

Description

Write S/Nto address:

Current serial number:

SIN size, in byte:

Byte Order

Display S/N as:
Increment serial number
by:

Use script to increment
serial number:

If this box is checked the programmer will write a serial number into
a specified address of a specified memory layer of a target device in
accordance to the parameters below.

Specify the current (start) serial number in this box. By default it is
0.

Specify a size of the serial number in bytes; for example: 1, 2, 4,
etc. By default one byte is set here.

These two toggled radio buttons define an order of bytes that
represent the serial number (if it occupies more than one byte) -
either the least significant byte (LSB) follows the most significant
byte (MSB) or \ise versa.

These radio buttons set the serial number display format - decimal or
hexadecimal.

By checking this radio button you set incrementing the serial
number by the fixed value specified here; for example: 1, 2, 10, etc.

By checking this radio button you specify the increment value as a
result of executing a chosen script file.

© 2015 Phyton, Inc. Microsystems and Development Tools

50

ChipProg Device Programmers

4.1.3.4.3.3 Checksum

The Checksum dialog allows auto calculating checksums of the data in buffers and writing this
checksum into the target device's memory. The dialog enables you to specify either a "standard"”,

Element of dialog

Write checksum to

address:

Address range for
checksum calculation:

Auto:

User-defined:

Use algorithm to calculate
checksum:

Use script to calculate
checksum:

Size of calculation result:

Size of data being summed:

Operation on summation

result:

Byte Order:

Exclude the following areas

from checksum calculation:

widely used algorithm or a custom, complex algorithms by using a script.

Description

If this box is checked the programmer will write a checksum into a
specified address of a specified memory layer of a target device in
accordance to the parameters below.

There are two options for setting the address range: Auto and User-
defined.

The address is defined as a full range of the selected device's
memory layer. It is set by default.

Here you can specify the start and end addresses of the selected
device memory layer, for which the program calculates the
checksum.

Here you can pick one from the drop down menu of several
algorithms. By default it sets the "Summation, discard overflow".

By checking this radio button you specify a method of the
checksum calculation as a result of executing a chosen script file.

These radio buttons allow to choose a size of the checksum
calculation: one, two or four bytes.

These radio buttons allow to choose a size of the data being
summed: one, two or four bytes.

These radio buttons allow either to apply no operation on the
calculated checksum or to negate or to complement the result.

These two toggled radio buttons define an order of bytes that
represent the checksum - either the least significant byte (LSB)
follows the most significant byte (MSB) or vice versa.

If the box is checked you can specify several memory ranges that
will be skipped by any algorithm that calculate the checksum. To
specify these ranges specify the start and end addresses and click
the 'Add' button.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 51

4.1.3.4.3.4 Signature string

The dialog specifies a procedure of writing a user-defined signature string into the target device. The
signature may include some generic data like the date when the device has been programmed and
some unique data like the project name, the operator name, etc..

Element of dialog

Description

Write Signature String to
address:
in sub-layer:

Max. size signature string:

Use Signature String
template:

Use script to create
Signature String:

Template String Specifiers:

4.1.3.4.3.5 Custom Shadow Areas

If this box is checked the programmer will write a specified signature
into a specified address of a specified memory layer of a target
device in accordance to the parameters below.

This field reserves a maximum length of the signature string in the
number of characters.

One of two toggled radio buttons. If checked, the string pattern
visible in the Template String Specifiers drop down menu box will be
programmed into the target device.

This radio button sets an alternative method of composing the
signature string by means of a custom made script.

This window lists the parameters (specifiers) to be placed into the
Use Signature String template field above as you wish they would be
written into the device. Each parameter starts with the symbol '$..

The dialog specifies a procedure of writing a user-defined data into the target device. A user can
specify an unlimited number of custom shadow areas. The data can be either entered manually or built

by a script.

4.1.3.4.3.6 Overlaping data specified in shadow areas

Before programming a device the ChipProgUSB merges: a) the data loaded to buffers and b) special
data set in the shadows areas and then writes the merged data array into the target memory device. If
some addresses of the merged data overlap each other then the data taken from the shadow areas
overwrite ones taken from the memory buffer as it is shown below:

Custom shadow area N ?
Custom shadow area N-1 ?
Custom shadow area N-2 ?

Custom shadow area 2 ?
Custom shadow area 1 ?

© 2015 Phyton, Inc. Microsystems and Development Tools

52

ChipProg Device Programmers

Signature string ?

Checksum ?

Serial Number ?

Data in memory buffer

Note! It is important to carefully check correctness of the addresses set in the the
Serialization, Checksum and Log File dialog to prevent spoiling data in the mistakenly
overlapped areas!

4.1.3.4.3.7 Log file

The dialog allows set up of a log or logs of the device programming.

Checking this box enables logging the device programming sessions

Enable log file k
and setting the log parameters below:

These two toggled radio buttons set if the logs will be separated by
a manufacturer or by the target device type or a single log that will
be kept for all the devices being programmed.

Separate log file for each
device

Another two toggled radio buttons that set what specifier will be
included into the log file name: both the manufacturer and device
type (for example: Atmel AT89C51, Microchip PIC18F2525, etc.) or
just the device type (for example: AT89C51, PIC18F2525, etc.).

Fle Name (Generated
Automatically)

This is a field for entering a full path to the folder where the log file

Folder for log file: . . .
will be kept. There is also a button for the path browsing.

By checking this radio button you select keeping one common log

Single log file for all device . .
for all types of the devices being programmed.

types

This is a field for entering a full path to the folder where the common

File Name) . . :
log file will be kept. There is also a button for the path browsing.

Log File Contents A set of the log file options.

If the device programming was conducted in the Gang
(multiprogramming) mode and if this box is checked the socket
number will be logged.

Gang mode: Socket #

By checking this box you enable logging the date and time of the

Date/Time . .
device programming.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 53

Events (device type change,

file names, etc.)

Device operation

Detailed Device operation

Operation Result

Device #/Good devices/Bad
devices

Serial Number

Signature string

Checksum

Buffer name

Programming address

Programming options

Log Fle Format

Log File Overwrite Mode

Warn if size exceeds

Immediately write log file to
disk, no buffering

4.1.3.4.4 The Preferences dialog

By checking this box you enable logging of all the events associated
with the device programming, e.g. the target device replacement,
loaded file names, etc.

By checking this box you enable logging of all the events associated
with the device manipulations.

By checking this box you enable more detailed logging of all the
ewvents associated with the device manipulations.

By checking this box you enable logging the results of the
programming operations.

By checking this box you enable logging a full number of the devices
programmed, number of successfully programmed devices and
number of failed ones.

By checking this box you enable logging the serial number read
from the device.

By checking this box you enable logging the signature string read
from the device.

By checking this box you enable logging the checksum value read
from the device.

By checking this box you enable logging the buffer name.

By checking this box you enable logging the ranges of the device
locations which have been programmed.

By checking this box you enable logging all the programming
options.

A pair of toggled radio buttons: one sets the plain text format of the
log file, the second sets the tabulated text to be viewed in the
Microsoft Excel format.

A pair of toggled radio buttons, checking the top one sets the mode
of appending new records to a specified log file and checking the
second overwrites the old log every time the ChipProg re-starts.

If this box is checked then every time when the log size exceeds a
user-specified value the ChipProgUSB issues a warning.

If this box is checked then the ChipProgUSB does not buffer the log
to the computer RAM but writes it straight to the drive.

This dialog gathers settings for some miscellaneous options.

© 2015 Phyton, Inc. Microsystems and Development Tools

54

ChipProg Device Programmers

'Cs'a Preferences @
Options
[Beload last file on start-up
Execute Power-On test on start-up
[| Temminate device operation on emor and do not display emor message
Show emor messages in the ‘Operation Progress’ pane
Digplay clock in the 'Operation Progress’ pane
[7] Log operations to the Console window
Reset all settings to defaults when closing project
Dery computer power suspension

Sounds

@ ilJze PC speakerto play sounds:

i) Use sound card to play sounds

Device operation emor: [Nune v] W, Test

Device operation complete: [Nune v] @, Test

Device operation complete (Gang Mode): [Nnne v] W, Test
Programming start {AutoDetect Mode): [Nor‘le v] W, Test
Device countdown value reaches zem: [Nune v] @, Test

7 o

Element of dialog Description

Spians Not all the dialog options are described here.
By checking this box you enable re-loading to the open buffer(s) the last

Reload last file on start-up . .
loaded file every time when you start the ChipProg.

This box is checked by default. By un-checking this box you skip
executing the start-up ChipProg self-testing

Execute Power-On test on
start-up

By checking this box you stop the programmer operations operations on
any error and suppress displaying error messages in the user interface.

Terminate device
operation...

By checking this box you enable dumping the programming session

Log operations in the .
trace to the Console window.

Console window

Deny computer power While the programmer does not operate with the target device the
suspension computer may switch to the sleep mode. By checking this box you

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 55

Sounds

Device operation error:

Device operation
complete:

Device operation complete
(Gang Mode):

Programming start
(AutoDetect Mode):

4.1.3.4.5 The Environment dialog

disable Windows to enter the sleep mode. This does not protect a PC
against falling asleep when an operator intentionally closes a notebook
lid or intentionally shut down the computer by pressing the button Start >
Shut down. This option neither blocks a screen saver nor disable
switching off the monitor power.

While the ChipProg executes any command on the target device falling
PC asleep is disabled regardless of the check box status because
switching power of the USB port may cause destroying a target device.

If this check box is unchecked then waking up the computer will cause
the ChipProgUSB software crashes. If the crash happens it is necessary
to cycle the ChipProg power and to launch the ChipProgUSB application.

All programmable sounds can be picked from the preset
ChipProgUSBsounds

Select the sound for error operations.

Select the sound for successful completion of the programming
operations in a single programming mode (one ChipProg is in use).

Select the sound for successful completion of the programming
operations in a gang programming mode (either a few single site
programmers are connected to one PC for multi-device programming or
when the ChipProg gang programmer is in use).

Select the sound for indicating the start of the device programming when
the ChipProg automatically detects the device insertion into the
programming socket.

The Environment dialog includes the following tabs:

Fonts tab,
Colors tab,

Mapping Hot Keys tab,

Toolbar tab,

Miscellaneous Settings tab.

4.1.3.4.5.1 Fonts

The Fonts tab of the Environment dialog opens a sub dialog for setting fonts and some appearance
elements in the ChipProgUSB windows. Only mono-spaced (non-proportional) fonts (defaultis
Fixedsys) are used to display information in windows. To improve appearance of the windows, you can
set up either another font for all windows, or individual fonts for each particular window.

The Windows area lists the types of windows. Select a type to set up its options. The set options are

© 2015 Phyton, Inc. Microsystems and Development Tools

56 ChipProg Device Programmers

valid for all windows of the selected type, including the already opened windows.

Element of dialog

Description

Window Title Bar

Window Toolbar
Location

Grid

Additional Line
Spacing

Define Font

Use This Font for All
Windows

Notes

Toggles the title bar for windows of the selected type. If the boxis checked it
adds a toolbar at the position specified by the Windows Toolbar Location
option. To save screen space uncheck the box. Also, see notes below.

Sets the toolbar location for the selected window.

Turns on/off the display of the vertical and horizontal grids in some window
types, and permits adjusting the column width (when the vertical grid is
allowed).

Provides additional line spacing, which will be added to the standard line
spacing. Supply a new value or choose from the list of most recently used
values.

Opens the Font dialog. The selected fontis valid for all windows of the
selected type.

Applies the font of the chosen window type to all ChipProgUSB windows.

1. To move a window without the title bar, place the cursor on its toolbar, where there are no buttons, and
then operate as if the toolbar were the window title bar. Also, you can access the window control
functions through its system menu by pressing the Alt+<grey minus> keys.

2. Each window has the Properties item in its local menu, which can be invoked by a right click. The Title
and Toolbar items of the Properties sub-menu toggle the title bar and toolbar on/off for the individual

active window.

4.1.3.4.5.2 Colors

The Colors tab of the Environment dialog opens a sub dialog for setting colors of such window elements
as window background, font, etc.. By default, most colors are inherited from MS Windows; however you
can setother colors if you prefer them.

Element of dialog

Color Scheme

Colors

Inherit Windows
Color

Use Inverted Text/
Background Color

Description

Specifies the color scheme name. Your can type in a name or choose a
recently used one from the list.

The Save button saves the current scheme to the disc; later you can restore
color settings byjusta mouse click. The Remove button removes the current
scheme.

Lists the names of color groups. Each group consists of several elements.

When this boxis checked, the selected color is taken from MS Windows. If
later you change the MS Windows colors through the Windows Control Panel,
this color will change accordingly. This option is available only for the
background and text colors.

When this boxis checked, the program inverts the selected window colors
(for text and background). For example, if the Watches window background
color is white and the text color is black, then the line with the selected

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 57

variable will be highlighted with black background and white text.

Edit Opens the Color dialog if the Inherit Windows Color and Use Inverted Text/
Background Color boxes are unchecked for this type of window.

The Color dialog also opens if you double-click a color in the Colors list.

Spread Sets the selected color for all windows. This option is useful for text and
background colors. For example, if you choose blue background and yellow
text for the Source window and then click the Spread button, these colors will
be set as the text and background colors for all windows.

Font For syntax highlighting in the Source window, you can specify additional font
attributes - Bold and ltalic.

In some cases when synthesizing bold fonts, MS Windows increases the size
of characters and the font becomes unusable, because the bold and regular
characters should be of the same size. In these cases, the Bold attribute is
ignored.

Sometimes this effect occurs with the Fixedsys font. If you need to use Bold
fonts, choose the Courier New font.

4.1.3.4.5.3 Mapping Hot Keys

The Key Mapping tab of the Environment dialog opens a sub dialog for assigning hot keys for all
commands in the ChipProgUSB. The Menu Commands Tree column displays a tree-like expandable
diagram of all commands. The Key 1 (Key 2) columns contain the corresponding hot-key combinations for
the commands. The actions applyto the currently selected command.

Element of dialog Description
Define Key 1 Opens the Define Key dialog. In the dialog, press the key combination you
Define Key 2 want to assign to the selected command, or press Cancel.

Alternatively, double-click the "cell" in the row of this command and the Key 1
(Key 2) column.

Erase Key 1 Deletes the assigned key combination from the selected command.
Erase Key 2 Alternatively, right click the "cell" in the row of this command and the Key 1
(Key 2) column.

4.1.3.4.5.4 Toolbar

The Toolbar tab of the Environment dialog controls the presence and contents of toolbars of the
windows.

© 2015 Phyton, Inc. Microsystems and Development Tools

58

ChipProg Device Programmers

Element of dialog

Description

Toolbar Bands

Buttons/Commands

"Hat" Local Window
Toolbars

Toolbar Settings are
the Same for Each
Project/Desktop Fle

Lists the ChipProgUSB toolbars. To enable/disable a toolbar check its box.

Lists the buttons for the toolbar selected in the Toolbar Bands list. To enable/
disable a button on the toolbar check its box.

Toggles between the "flat" and quasi-3D appearance of the local toolbar
buttons for the specialized windows.

Employs the current settings from this dialog for other projects or files
opened later.

4.1.3.4.5.5 Messages

Check messages that program should display, uncheck messages that you do not want to be
displayed.

4.1.3.4.5.6 Miscellaneous Settings

The Miscellaneous tab of the Environment dialog allows the setting of miscellaneous parameters of the

ChipProgUSB windows and messages.

Element of dialog

Description

Main Window Status
Line

Quick Watch
Enabled

Highlight Active
Tabs

Double Click on
Check Box or Radio
Button in Dialogs

Show Hotkeys in
Pop-up Descriptions

Do not Display Box if
Console Window
Opened

Always Display
Message Box

Automatically Place
Cursor at OK Button

Audible Notification

Controls presence and location of the <% CM%> window status line.

Turns the Quick Watch function on or off.

Turns highlighting on/off for the currently active tab (the MS Windows-style) in
windows that have tabs.

Sets the mouse’s double click function equal to a single click, plus pressing
the OK button in that dialog.

Turns the Hotkeys display on/off in the short prompts for toolbar buttons.

If the Console window is open, messages will be displayed there. Otherwise,
the message boxwill display messages.

All issued messages will be displayed in the message box.
The Console window also displays these messages.

The cursor will always be on the OK button when the message box opens
and this boxis checked.

If you prefer you may press the Enter keyinstead of using the mouse to click
OK.

If you select this option, there will be a beep along with the error message.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 59

for Error Messages

Log Messages to
File

Overwrite Log Fle
After Each Start

Append Messages
to Log Fle

4.1.3.4.6 Configurating Editor Dialog

Information (as opposed to error) messages are always displayed without
the beep.

Specifies the log file name. All messages will be written to this file. The
method of writing is controlled by the radio button with two options:

Specifies erasing the previous log file, if it exists, and creates it afresh for
every session.

Specifies appending messages to the end of an existing log file. In this case,
the log file size will grow endlessly.

The ChipProgUSB software includes a built-in editor thatis used for editing one type of the objects of the
ChipProgUSB - Scripts Files. The Editor Options dialog includes the following tabs:

General Editor Settings tab,

Key Mapping tab.

4.1.3.4.6.1 General Editor Settings

The General tab of the Editor Options dialog sets up all common options applicable to every Source

window opened.

Element of dialog

Backspace Unindents

Keep Trailing Spaces

Vertical Blocks

Persistent Blocks

Create Backup Fle

Horizontal Cursor

CR/LF at End-of-file

Syntax Highlighting

Description
Checking/clearing this boxtoggles the Backspace Unindent mode.
See below for explanations.

When this boxis checked, the editor does notremove trailing
spaces in lines when copying text to the buffer or saving itto a disk.
Spaces are removed when the boxis unchecked.

If the boxis checked, the Vertical Blocks mode is enabled for block
operations.

If the boxis checked, the Persistent Blocks mode is enabled for
block operations.

If the boxis checked then <% CM%> creates a *.BAK file each time a
file is saved in the Source window.

If the boxis checked it sets the cursor as a horizontal line, like the
DOS command prompt.

If the boxis checked, itadds an emptyline to the file end when
saving the file to disk (if there is no one yet).

If the boxis checked, it forces syntax highlighting of language
constructions.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Device Programmers

Highlight Multi-line If the boxis checked it enables highlighting of multi-line comments.
Comments By default, the window highlights only single-line comments.
Auto Word/AutoWatch Pane If the boxis checked, any new Source window will open with the

Auto Word/AutoWatch pane atits right and the automatic word
completion function will be enabled.

Full Path in Window Title If the boxis checked, the Source window caption bar displays the
full path to the opened file.

Empty Clipboard Before If the boxis unchecked, then previously kept data remains

Copying retrievable after copying to the clipboard.

Convert Keyboard Input to If the boxis checked, the Source window converts the characters

OEM that you input in the window from the MS Windows character set to

the OEM (national) character set corresponding to your national
version of the Windows operating system. Also, see note below.

AutoSave Fles Each ... min If the boxis checked, <% CM%> will save the file being edited every
‘X' minutes, where ‘X' is a settable constant chosen bythe user.

Tab Size Sets the tabulation size for the text display. The allowable value
ranges from 1 to 32. If the file being edited contains ASCII tabulation
characters, they will be replaced with a number of spaces equivalent
to the tabulation size.

Undo Count Sets the maximum number of available undo steps (512 by default).
If this does not suffice, you can set a value of up to 10000 steps.
However, larger values increase the editor's memoryrequirement.

Automatic Word Completion If the Enable boxis checked, it allows the automatic word completion
function. The Scan Range drop-down list sets the number of text
lines to be scanned bythe automatic word completion system.

Indenting Toggles automatic indenting on/off for a new line that is created
when you press Enter.

Note. You should check the Convert Keyboard Input to OEM box only if you are going to type something
in the Source window when working with a file coded in the OEM character set. If you need onlyto display
such a file, specify the Terminal font for the Source window in the Fonts tab of the Environment dialog:
select Editor in the Windows list and press the Define Font button.

The Backspace Unindent mode establishes the editing result from pressing the Backspace keyin the
following four cases, when the cursor is positioned at the first non-space character in the line (there are
several spaces between the first column of the window and the first non-space character):

Backspace Unindent enabled Backspace Unindent disabled

Insert mode Any preceding blank spaces in the One space to the left of the cursoris
line are deleted. The rest of the line deleted. The cursor and the rest of the
shifts left until its first characteris in line to the right of the cursor shift one
the first column of the window. position left.

Overwrite mode The cursor moves to the first column Onlythe cursor moves one position
of the window. The textin the line left. The text in the line remains in
remains in place. place.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 61

4.1.3.4.6.2 The Editor Key Mapping

You can manage the list of available editor commands with the Key Mappings tab of the Editor Options
dialog. You can add and delete editor commands, assign (or reassign) hot keys for new commands and
for built-in ones.

The left column of the list contains command descriptions. Command types, corresponding to the
command descriptions, are in the second column. (Command means a built-in ChipProgUSB
command; Script ‘XXX’ means an added user-defined command). Two columns on the right specify the
hot key combinations to invoke the command, if any.

Element of dialog Description
Add Opens the Edit Command dialog for adding a new command to the listand

setting up the command parameters.

Delete Removes a selected user-defined command from the list. Any attempt to
remove a built-in command is ignored.

Edit Opens the Edit Command dialog to change the command parameters. For
built-in commands, you can only reassign the hot keys (the Command
Description and Script Name boxes are not available).

Edit Script FHle Opens the script source file of this command in the Script Source window.
Creating new commands

To create a new command, you should develop a script for it. In fact, you add this script to the editor, not
the command. This means that your command is able to perform much more complex, multi-step
actions than a usual editor command. Moreover, you can tailor this action for your convenience, or for a
specific work task or other need. Your scripts may employ the capabilities of the script language with its
entire set of built-in functions and variables, text editor functions and existing script examples.

Ascript source file is an ASCII file. To execute your command, the editor compiles the script source file.
Note that before you can switch to using the script which you have been editing, you mustfirst save it to
the disk so that ChipProgUSB can compile it.

Script source files for new commands will reside onlyin the KEYCMD subdirectory of the ChipProgUSB
system folder. Several script example files are available in KEY CMD. For more information about
developing scripts, see Script Fles.

This dialog Edit command sets parameters for a new command or for existing ones.

Element of dialog Description

Command Enter the command description here (optional). Text placed in this box will be
Description displayed in the list of commands for easier identification of the command.
Script Name The name of the script file that executes this command.

Define Key 1 Opens the specialized dialog box where you can assign two key

Define Key 2 combinations to a couple of hot keys.

© 2015 Phyton, Inc. Microsystems and Development Tools

62 ChipProg Device Programmers

The script source files for commands will reside onlyin the KEYCMD subdirectory of the ChipProguUSB
system folder. Enter the file name only, without the path or extension.

Notes
1. You should not specify the combinations reserved by Windows (like Alt+— or Alt+Tab).

2. We do notrecommend assigning the combinations already employed by commands in the Source
window or ChipProgUSB, because then you'll have fewer ways to access these commands. Some
examples are Alt+F, Shift+F1, Ctrl+F7, which are commands that open the application menus.
Others are the local menu hot keys of the editor window.

3. You can use more than one control key in the keystroke combinations. For example, you can use Ctrl
+Shift+F or Ctrl+Alt+Shift+F as well as the Ctrl+Fcombination.

4. For some built-in commands, the hot keys cannot be reassigned (for example, the keys for moving the
cursor).

4.1.3.5 The Commands Menu

This menu invokes main commands (or functions) that control the programming process, as well as
some senice commands.

Command Description
Blank Check This command invokes the procedure of checking the target device

before programming to make sure that it is really blank. Programming
of some memory devices does not require erasing them before re-
programming. For such devices the Blank Check command is
blocked and it is shown grayed out on the screen.

This command invokes the procedure of programming the target

Program X .) :
device, e.g. writes the contents of the buffer into the target device’s
cells.

Verify This command invokes the procedure of comparing the information
taken from the target device with the corresponding information in the
buffer.

Read This command invokes the procedure of reading the content of the
target device’s cells into an active buffer.

Erase This command invokes the procedure of erasing the target device.

Some memory devices cannot be electrically erased. In this case the
Erase command is blocked and is grayed out on the screen
This command invokes the procedure of AutoProgramming.

Auto Programming

Local menu Opens the local menu of active window.

Calculator Opens the Calculator dialog, which performs calculator functions.

4.1.3.5.1 Calculator

Aprime purpose of the embedded calculator is to evaluate expressions and to convert values from one
radix to another. You can copy the calculated value to the clipboard.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 63

Element of dialog Description

Expression The text box for entering an expression or number.

Copy As Specifies the format of results that will be copied to the clipboard.

Signed Values If this boxis checked the result of a calculation will be interpreted and
displayed as a signed value (for the decimal format only).

Display Leading If this boxis checked, binary and hexadecimal values retain leading zeroes.

Zeroes

Copy Copies the resultto the clipboard in the format set by the Copy As radio
button.

Clr Clears the Expression text box.

Bs Deletes one character (digit) to the left of the insertion point (Backspace).

0x Inserts "0X".

>> Shifts the expression result to the right by the specified number of bits.

<< Shifts the expression result to the left by the specified number of bits.

Mod Calculates the remainder of division by the specified number.

While you are typing the expression in the Expression drop-down list box ChipProgUSB tries to evaluate
the expression and immediately displays the resultin different formats in the Result area. Statuses of
the Copy As radio button and two check boxes in this area control the result format.

You can assign values to program variables and SFRs by typing an expression that contains the
assignment. For example, you maytype SP = 66h and the value of 66h will be assigned to SP.

Examples of expressions:
0x1234
-126
mai n + 33h
(float)(*ptr + RO)
101100b & OxF

4.1.3.6 The Script Menu

The ChipProgUSB is featured with the tools known as an embedded script language. This mechanism is
intended for automation of the programming operation, mastering complex operations thatinclude both the
programmer itself and the programmer operator's actions. The ChipProgUSB enables composing scripts

© 2015 Phyton, Inc. Microsystems and Development Tools

64 ChipProg Device Programmers

files (SF) and executing them.

This Script menu contains a few commands associated with script files. The commands can be
configured by the ChipProg user and the list can be expanded by adding a new item (command). To add a
new item, place a script file into the current folder or into the ChipProgUSB installation folder. The first non-

empty line of any script file should contain three slashes followed by the text that will appear in the Scripts
menu:

/1] Menu itemtext

When ChipProgUSB builds the Scripts menu, it searches the current folder and its installation folder for all
*.CMD files that contain '///"in the firstline (remember that '//' denotes the beginning of the single-line
comment) and inserts the text following ///" into the Scripts menu.

When you select a Scripts menu item and click the Start button, ChipProgUSB launches the selected

script.

ﬂE Start... Opens the Script Fles dialog from which you can
New Script Source Create a new Script Fle text.

Q Open Watches Opens the Watches window.

window
Add watch... Add watch to the Watches window .
Editor window Opens a list of the commands to Compose a new, Open, Save,
Save as, Print a script file. of the Editor window.

Text Edit Edit a list of the commands for editing a selected Script Fle
Example Scripts Invokes the

Help on this menu

Working with scripts is describe in the Script files topics.
4.1.3.7 The Window Menu
This menu lets you control how the windows are arranged within the computer screen. The list of currently

opened windows is shown in the lower part of the menu. By choosing a particular window name in this list
you immediately activate it and bring it to the foreground of the computer screen.

Command Description

Tile Arranges all windows without overlap. Makes the window sizes
approximately equal.

Tile Horizontally Arranges the windows horizontally without overlap. Makes the window
size as close to each other as possible.

Cascade Cascades the windows.

Arrange Icons Arranges the icons of the minimized windows.

Close All Closes all windows.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 65

4.1.3.8 The Help Menu

This menu gives access to the help system. See also, How to Get On-line Help.

Command Description

Contents Opens the contents of the help file.

Search for Help on Opens the dialog for searching the tool's help system for the content,
indexand keywords.

Phyton Adapters Opens the HTML file, which includes adapters' part numbers, their
short descriptions and wiring diagrams.

Visit Phyton website Open the www.phyton.com site in your default Internet browser.

Check for updates Opens the Update Checking dialog that directly links your computer to
the Phyton download webpage.

Send e-mail message to Opens the default email clientto compose a message to Phyton.

Phyton

About ChipProg The boxdisplays: the ChipProgUSB and the ChipProg Windows shell

software version numbers; the selected target device type and the
device manufacturer.

414 Windows

The ChipProgUSB enables opening the following types of windows by means of the View menu:

Program manager

Device and Algorithm Parameters' Editor
Buffer

Device Information
Console

Plus it can operate with two types of windows associated with the ChipProgUSB script files:

e Editor
e Watches

4.1.4.1 The Program Manager Window

The Program Manager window is the major control object on the screen from which an operator
controls the ChipProg . While some windows can be closed in a process of programming this one is
supposed to be always open and visible.

The window includes three tabs opening three group of settings and status indicators:

© 2015 Phyton, Inc. Microsystems and Development Tools

http://www.phyton.com

66 ChipProg Device Programmers

The Program Manager tab
The Option tab

The Statistics tab

The Project Manager and Options tabs look different and enable different settings for the ChipProg
programmers working in single-programming and multi-programming modes. These tabs are identical
for the ChipProg-G41 gang programmer and for the ChipProg-48, ChipProg-40 and ChipProg-ISP
programmers when they are configured to work in the multi-programming mode.

4.1.4.1.1 The Program Manager tab

The tab serves for setting major programming parameters, executing the programming operations and
displaying the ChipProg statuses.

Element of dialog Description

Buffer: The field Buffer displays the active buffer to which the programming
operations (functions) will be applied. A full list of open buffers is
available here via the drop-down menu.

Functions This field lists the tree of the functions relevant to the selected
target device. Some functions represent the ChipProg commands
while others integrate a few sub-functions and can be expand or
collapsed. Double clicking on the function invokes the command
and is equivalent to single clicking the Execute button (see
below).

Blank check Checks if the target device is blank

Program Programs the target device (writes the information from an active buffer
to the target device).

Read Reads out the content of the target device to an active buffer.

Verify Compares the content of the target device and an active buffer

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 67

Executes a preset sequence of operations (batch operations) settable

Auto Programmin - .
g g in the Auto Programming dialog. The Edit Auto button opens this

dialog.

Addresses Here you can set the addresses for the buffer and the target device
to which the programming functions will be applied.

Device start: The veryfirst address in the target device's physical memory which will
be programmed or read.

Device end: The verylast address in the target device's physical memory which will
be programmed or read.

Buffer start: The veryfirst address in the buffer memory from which the data will be
written to the target device or to which the data will be read from the
device.

Execute There are three alternative ways to activate a highlighted function: a)

to click the Execute button; b) to double click on the function line; c) to
push the Enter button on the PC keyboard.

Any function can be executed repeatedly. The number of repetitions

Repetitions:
can be set here.

Edit Auto Clicking on this button opens the Auto Programming dialog.

In this field the ChipProgUSB displays the current operation
progress bar and the operation status (OK, failed, etc.).

Operation Progress

Besides the generic functions (Blank Check, Read, Verify, Program, Auto Programming) the window
Functions often includes collapsed submenu for the functions specific for a selected target device. Beings
expanded these functions list commands for the parameters settable in the Device and Algorithm
Parameters editor window.

IMPORTANT NOTE!

Any changes made in the ‘Device and Algorithm Parameters’ window do not
immediately cause corresponding changes in the target device. Parameter settings
made within this window just prepare a configuration of the device to be programmed.
Physically, the programmer makes all these changes only upon executing an
appropriate command from the ‘Program Manager’ window.

4.1.4.1.1.1 Auto Programming

Each device has its own routine set of programming operations that usuallyincludes: Erasing, Blank
Checking, Programming, Verifying and often Protecting against unauthorized reading. The ChipProgUSB
stores default batches of these programming operations for each single supported device and allows the
invocation of the batch of operations just by a mouse click or pressing the Start button on the programmer
panel. It also enables the customization of a sequence of elementary functions (operations) via the Auto
Programming dialog. To open this dialog click on the Edit Auto button.

© 2015 Phyton, Inc. Microsystems and Development Tools

68

ChipProg Device Programmers

Edit Auto Programming Functions list 2] x|
— Selected funchions | — Available functions
Eraze - Program -
Blark check . JEp J
Data: Blank Check Data e
S l:.'} <4 Add | - Werify
Werify - Program HSE & #=AF
Drata: ety Data - Fead HSE & =aF
Program H5B & =AF wemmﬂe >i - Eraze
=5 D_ata
Blank Check Data
Program Data
Read Data
i Yerify D ata —
v Done | Restore defaultz ? Help |

Adding a Command to the Auto Programming Function List

The tree including all the functions available for the chosen target device is shown in the right pane
Available functions. To include a function to the batch highlight it in the right pane and click the Add
button - the function will appear in the left pane Selected functions. The functions will be then
executed in the order in which they are positioned in the Selected functions pane, from the top to the
bottom. To correct the function batch highlight the command to be removed and click the Remove
button.

4.1.4.1.2 The Options tab

The tab serves for setting additional programming parameters and options:

Split data The group-of radio puttons in the §p|it data field all_ows the
programming of 8-bit memory devices to be used in the
microprocessor systems with the 16- and 32-bit address and data
buses. To do this the buffer content should be properly prepared to
split one memory file into several smaller file.

Options

Insert test If this box is checked the ChipProgUSB will test whether each of
the device leads is reliably squeezed by the programming socket
contact. If some contact is bad a current operation will be
blocked.

Check device ID By default this option is always on and the ChipProg always
verifies the target device identifier given by the device

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 69

manufacturer. If the box is unchecked the program will skip the
device ID checking.

Reverse bytes order

If this box is checked the ChipProgUSB will sweep the byte order
in the 16-bit word while it executes the Read, Program and
Verify operations. This option does not affect the data in the
ChipProg buffers, as they remain the same after the file loading.

Blank check before
program

If this box is checked the ChipProgUSB will always check if the
target device is blank before programming it.

Verify after program

If this box is checked the ChipProgUSB will always erify the device
content right after it was programmed.

Verify after read

If this box is checked the ChipProgUSB will always erify the device
content right after it was read out.

Auto-Detect presence of
device in the socket

If this box is checked the ChipProgUSB will test whether each of
the device leads is reliably squeezed by the programming socket
contact. If so a preset programming function (operation) or Auto
Programming will start. Otherwise, if some contact is bad a
current operation will be blocked.

On Device Auto-Detect or
'Start' Button:

The group of radio buttons. The checked radio button defines what
the ChipProg will do upon the the drive auto-detect or pushing the
'Start' button.

4.1.4.1.2.1 Split data

The group of radio buttons in the Option tab in the Split data field allows programming 8-bit memory
devices to be used in the microprocessor systems with the 16- and 32-bit address and data buses. To
do so the buffer content should be properly prepared to split one memory file iinto several smaller files.
The data splitting enable the conversion of the data read from 16- or 32-bit devices to make file images
for writing them to memory devices with the byte organization.

No split

Even byte

Odd byte

This is a default option. A whole buffer is not split and is considered
as a whole one byte data array.

The data in the buffer are considered as an array of 16-bit words.
The buffer-device operations are conducted with even bytes only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location also with the address=0, the byte from the device with the
address=1 will be placed to the buffer location with the address=2,
etc.

The data in the buffer are considered as an array of 16-bit words.
The buffer-device operations are conducted with odd bytes only.
For example, if the programmer reads the device from the

© 2015 Phyton, Inc. Microsystems and Development Tools

70 ChipProg Device Programmers

address=0, the byte with this address will be placed to the buffer
location also with the address=1, the byte from the device with the
address=1 will be placed to the buffer location with the address=3,
etc.

Byte 0 The data in the buffer are considered as an array of 32-bit words.
The buffer-device operations are conducted with the byte #0 only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location also with the address=0, the byte from the device with the
address=1 will be placed to the buffer location with the address=4,
etc.

Byte 1 The data in the buffer are considered as an array of 32-bit words.
The buffer-device operations are conducted with the byte #1 only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location with the address=1, the byte from the device with the
address=1 will be placed to the buffer location with the address=5,
etc.

Byte 2 The data in the buffer are considered as an array of 32-bit words.
The buffer-device operations are conducted with the byte #2 only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location with the address=2, the byte from the device with the
address=1 will be placed to the buffer location with the address=6,
etc.

Byte 3 The data in the buffer are considered as an array of 32-bit words.
The buffer-device operations are conducted with the byte #3 only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location with the address=3, the byte from the device with the
address=1 will be placed to the buffer location with the address=7,
etc.

4.1.4.1.3 The Statistics tab

This tab opens the fild displaying the programming session statistical results - Total number of
devices that were programmed during the session, what was the yield (Good) and how many devices
have failed (Bad). Getting such statistics is quite helpful when you need to program a series of same
type devices. It is important to remember that the statistical counters are affected by executing the
Auto Programming only, as execution of other functions makes no effect on the statistics.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 71

Element of dialog Description

Clear statistics This button resets the statistics..
Device Programming Normally the Total counter increments after each Auto
Sl Programming; the , Good and Bad counters also count up. The

ChipProgUSB reverses the counters to decrement their content (to
count down).

If the box is checked the ChipProgUSB will count the number of the
programmed devices down.

Enable countdown

If the box is checked the ChipProgUSB will issue a warning when

Display message when)
the counter Total is zeroed.

countdown value reaches
zero

If the box is checked the ChipProgUSB will reset all the counters
when the counter Total is zeroed.

Reset counters when
countdown value reaches
zero

If the box is checked the ChipProgUSB will count only the
successfully programmed (Good). All other statistics will be
ignored.

Count only successfully
programmed devices

Set initial countdown Clicking on the button opens the box for entering a new Total
el number that then will be decremented after each Auto

Programming.

4.1.4.2 The Device and Algorithm Parameters window

The Device and Algorithm Parameters Editor window is intended for displaying and editing (where
possible) the device's internal parameters and settings, which after editing should be programmed into a
target device by executing the Program command in the Program Manager window.

© 2015 Phyton, Inc. Microsystems and Development Tools

72

ChipProg Device Programmers

=0 %

[i Dot

Fuse Bits
Lisek beby
Caltrstion Bpte

Adgonthm
Ve

Device:
Adapteriz):

e eyl
P
Lecsch: bz
a Coslbuation vahus for thes interral AC Oncllsior
Bligcaithm Paameterns
Poling | Progamimirg sigonthe
5ig Poweet suppile villings
CDL o v

& Device Information

Changad vahsss shiosr in red color

L Chanle stde paanstens S i b cober

Fe

Atmel ATmegalo®
TAFP: AE-Q6d-ATm1ZE

Drevice ared Algorithen paramneters

The parameters displayed into this window are split in two groups: Device Parameters and Algorithm
Parameters. The groups are separated by a light blue stripe

Device This group includes parameters that are specific for each selected device, such as:
Parameters | sectors for flash memory devices, lock and fuse bits, configuration bits, boot
blocks, start addresses and other controls for microcontrollers. Usually these
parameters represent certain bits in a microcontroller's Special Function Registers
(SFRs). Some of these SFRs can be set in the ChipProg buffers in accordance with
device manufacturers’ data sheets. But setting the parameters in the Device and
Algorithms Parameters window is much easier and more intuitive. It is impossible tg
specify absolutely all features that may appear in future devices, and, therefore, new
parameters for these new devices.
Important note! Changing device Progran Manager
parameters in the Device and Algorithm Program Manager | Options | Statistics |
Parameters Editor window does not [Dievice Status: Mo device
immediately cause corresponding changes Buffer. |Buffer #0: Code (128 KB bytes
inside the target device. While making the ~ Funations
changes you just prepare a new -~ Blank Check
configuration that is different from the default :E‘;ﬁfm
for the device to be programmed. Erase
Physically, the ChipProg makes the device - Read CRC
= Device Parameters
parameter changes only when you execute T —
the function Program in the Device ~Read
Parameters group in the Function pane of L:‘gfa':iswm
the Program Manager window. See the .. Auto Programming
picture at left.
Algorithm This group includes parameters of the programming algorithm for the selected device
Parameters | —including the algorithm type and editable programming woltages.

The window is separated into three columns: 1) the parameter's name, 2) its value or setting, 3) a short
description. Names of the editable parameters are shown in blue; other names are shown in black.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 73

Default values in the column Value are shown in black; after changing a parameter the new value will be
shown in red. If the value is too long to display the window represents it as three dot signs ('..."). If these

dots are red it means that the parameter has been edited.

In order to edit a parameter, double click its name. Some editable parameters are represented by a set
of check boxes, some require to be typed in prompt boxes.

The local Device and Algorithm Parameters Editor window's toolbar includes a few buttons
positioned on the top of the window:

Toolbar button

Description

Edit

Clicking on this button opens the editing dialog to modify the
highlighted parameter in the format, most convenient for this
parameter. A double click on the highlighted parameter also opens
the editing dialog.

Min.Value

If the parameter to be modified has an allowed range in which it
may be set, then clicking on the Min.Value button sets the minimal
allowed value to the highlighted parameter.

Max.Value

If the parameter to be modified has an allowed range in which it
may be set, then click on the Max.Value button to set the maximal
allowed value to the highlighted parameter.

Default

Click on this button returns the default value to the highlighted
parameter.

All Default

Click on this button returns the default values to all the parameters
displayed in the window.

Depending of the parameter's type ChipProgUSB offers the most convenient format for the parameter

editing:

Method of editing

Description

Drop-down menu

When the parameter value may be picked from a few preset values
the dialog offers a drop-down list with these values. Highlight a new
value in the list and click OK to complete the editing. For example,
some microcontrollers can be programmed to work with different
types of the clock generators, so the menu prompts to select one of
them.

Check Box dialog

When some options can be set or reset the dialog appears in a
form of several boxes indicating the default or lately set option
statuses. To toggle the option check or uncheck the box. For
example, some microcontrollers allow the locking of a particular
part of the memory by setting several lock bits, so the menu

© 2015 Phyton, Inc. Microsystems and Development Tools

74

ChipProg Device Programmers

prompts to check the lock bits represented as a set of check
boxes.

When the parameter value may be set freely in an allowed range the
dialog offers a box for entering a new value and a history list
displaying a few recently set values. The dialog prompts with the
min and max values that can be set for each parameter and restricts
to enter the value out of the allowed range. This type of editing is in
use for setting custom values for Vcc and Vpp wltages.

Customizing the
parameter

4.1.4.3 Buffer Dump Window

The Buffer Dump window displays the contents of the memory buffer.
ChipProg supports a flexible buffer structure:

o You can create an unlimited number of buffers. The number of buffers that you can open is
limited only by the available computer RAM.

o Every buffer has a certain number of sub-levels depending on the type of target device.
Each sub-lewel is associated with a specific section of a target device's address space. For
example, for the Microchip PIC16F84 microcontroller every buffer has three sub-levels: 1)
code memory; 2) EEPROM data memory; 3) user's identification sub-level.

This flexible structure allows for easy manipulation of several data arrays that are mapped to different
buffers. To open a Buffer Dump window, click on the command Main Menu > View > Buffer Dump.

#0-Co 0000h =1olx
Addr | Load | Save | Configure Euﬁerl View | Aodif | Blucki
File: E:\Info'Ph_Products\ROMAMET HEX ﬂ -
Checksum: 0003E0DC ¥ F: 8 - 2 =I5
2 5
00000000k: 0OZ OB 6z 32 FF FF FF FF I
00000011lh: FF FF 32 FF FF FF FF FF I Save | Confiqure Buffer| Setun | view iodiy | Blod
7 File: Ex\InfoiPh_Products\ROMAMET HE= -

00000022h: FF 02 00 53 C2 91 D2 97 I|checkeurn O00SE0DC

00000033h: 00 75 89 25 Dz BC 75 CA HOOooooOoh: 002 011 098 050 255 255|00b2yy
00000044h: DO 1z DA 35 75 81 07 CZ foo000006h: 255 255 255 255 255 050|yyyyve
00000055h: 03 Cz 99 32 Cz AF C2 AC Ilgo0o000ch: 255 255 255 255 255 255 |yyyyvy
000000G6h: 2B A2 9A B2 DO 40 10 AZ Ynpopo00lZh: 255 050 255 255 255 255 |y2yyyy
00000077h: 76 0A 18 76 4C 32 20 10 (Joooo0o0lBh: 255 255 255 050 255 255 |yyy2yy
00000068h: AB 81 76 21 18 76 03 32 Yoo0000lEh: 255 255 255 255 255 002|yyyyy0
DON000S%h: 0D E4 A3 93 FB A3 E4 53 Hopopoooz4h: 000 083 194 145 210 151| shtd—
000000&Ah: 80 E7 74 E6 02 DA 4C AD (jpopp0o02Ah: 210 181 018 008 216 080|dpd0dr -
00O00DEEh: 04 33 A4 04 9& AR 04 DF sm—mrreor T T
000000Ccch: AE 06 04 00 74 05 25 2c 1[[T iomavim e SRRvsoe/eeslo | s |
000000DDh: 02 12 0% 85 E5 33 60 0B [Addr | Load | Sawe | Confiqure Bufier| Semh] view odh | Blad
000000EEh: B0 03 74 03 25 2C FS5 2B | [File E:\nfosPh_ProductssHOMSMST HE ; e
000000FFh: 09 85 12 06 E0 12 03 4 - |Checksum 000SGODC ~
00000110h: 12 09 76 74 06 12 09 g5 1/00000200h: B3 D2 92 78 00 ES 23 F2|“drx &#s
00000121h: 12 OA A3 75 45 04 75 45 (|00000208h: 12 07 BF 40 05 12 OB 45|00;G000E
00000132h: 2B 12 09 AC 12 09 76 74 1|00000210h: 50 11 12 0A AS 75 45 04|PO0O@uED
00000143h: 2E 12 09 90 AA 2B 12 09 |D0000218h: 75 46 02 12 0A 6A 75 33 |urO00ju3
00000154h: 21 00 12 09 90 ES 2B B4 -|00000220h: 02 80 13 74 0B 25 2C F5|0e0t0%, 3
00000165k: 90 12 01 91 A2 12 QA B2 1|00000228h: 2B 12 09 AC AZ 13 E4 34|+00-¢0&4
00000176h: AC i@ 12 09 90 12 0l 91 .|00000230h: 00 FS5 2B 12 0% BC 12 09| &+00%00
00000187h: 09 25 2C F5 2B 12 09 ac (|00000238h: 76 74 OC 12 09 85 74 00|vtOOO.t
00000198k: 2E 60 OF BS B2 47 85 g2 .|00000240h: 12 04 86 c2 19 D2 18 D2 |O00tADOOO
000001ASk: 56 22 2 94 o2 93 o2 92 1|00000248h: 93 D2 92 78 00 ES 23 F2|“0'x &#d

000001EAh: ES 23 F2 74 00 12 04 86 50 00 00 74 5A 12 0A CF A3|4#dt OOtO0 +tzOOIz
000001ceh: 74 A5 12 0A CF 74 03 12 04 86 90 00 00 12 0B 25 c3|t¥00It000+0 OO%4 hd

Several Windows of Same Buffer

The picture above displays three Buffer Dump windows representing three parts of the same bulffer:

e #1 (the largest) shows the buffer contents beginning at address Oh;
e #2 shows the same buffer contents beginning at the same address but displaying data in decimal

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 75

format;
e #3 window shows the data beginning at address 200h.

The left-most column in the windows above shows absolute addresses of the first cell in a row. The
addresses always increment by one byte: 0, 1, 2.... Each address is followed by a semicolon ().
When you resize the window it automatically changes the addresses shown in the address column
in accordance with the number of codes or data that go in one line. Some windows may be split into
two panes — left pane for data in a selected format and right pane showing the same data in ASCII
format. The window has a toolbar for invoking setting dialogs and commands. Right under the toolbar
the program displays a full path to a loaded file and a checksum of the dump.

Local menu and Toolbar
The local menu, which can be opened by the right mouse click, includes the Buffer Dump window

context commands and dialog calls. Most, but not all, of the local menu lines are duplicated by the local
toolbar buttons displayed at the top of the window. Here are the local menu and toolbar items:

Menu Command or Call Toolbar Description
button
New address... Addr Opens the Display from address dialog.
Load file to buffer... Load Opens the Load window Dump dialog.
Save data tofile... Save Opens the Save window Dump dialog.
Configure buffer... Coanfi?eurre Opens the Configuration Window Dump dialog.

Window setup... Setup Opens the Window Dump Setup dialog.
By default editing in the buffer dump windows is
disabled and you can only view the data. If the box is

i it di View) .
View only, edit disabled unchecked the editor will be enabled. Then you may
overtype the value under the cursor.
Modify data Modify Opens the Modify data dialog. This call is enabled only

when the View only, edit disabled is off.

Operations with memory

blocks Block Opens the Operations with memory blocks dialog.

Swap fields This command allows swapping the cursor position

N i i
0 button between the right and left window panes.

4.1.4.3.1 The 'Configuring a Buffer' dialog

The dialog allows configuring the buffer dumps in the most convenient format and name/rename open
buffers. By default the first opened buffer is named ‘Buffer #0’. The next buffer gets the name ‘Buffer
#1', and so on. You can, however, rename the buffer as you wish.

© 2015 Phyton, Inc. Microsystems and Development Tools

76 ChipProg Device Programmers

Buffer name, Code settings I |0 location I Data I

— Buffer Mame

 Size of Sub-Level 'Code"

|16 MB =l

~ Fill sub-level 'Code' with data:
¥ Before loading file
v after device iz zelectad

Drata ko fill sub-lesel vith:
% Predefined [04FFFFFFFF]
" Custom: IEI:-:FF j

v Shiink bufer size when device iz selected

ok | [X G | [2_teb |

By default each buffer has a minimal size of 128K RAM in a PC and by default the ChipProgUSB
program fills the buffer with a predefined value (usually OFFh). You can customize these buffer settings
- check the Custom radio button and type in the pattern to fill the buffer.

4.1.4.3.2 The '‘Buffer Setup' dialog

The dialog allows controlling the data presentation in the Buffer Dump window. You can open the dialog
using the windows local menu (the Windows Setup command) or by clicking the Setup button on the
window toolbar.

B The field displays a list of all open buffers. The programming
' functions will be applied to the active one.

Display Format Is represented by three radio buttons. Here you can select one of
the formats for the data displayed: binary, decimal or hexadecimal.

Display Data As: Is represgnted by fogr radio buttons. Here you can select the data
presentation format in the buffer: 1, 2, 3 or 4 Byte.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 77

Options

The options here customize the display format.

ASCII pane

If the box is checked the right pane will display ASCII characters
corresponding to the data in the buffer dump.

Display checksum

If the box is checked the calculated checksum will be displayed in
the blue strip over the data dump, right under the window local
toolbar.

Limit dump to sub-layer
size

If the box is checked the window dump will display a part of
memory equal to the active sub-layer's size.

Signed decimal and hex
values

If the box is checked the most significant bit (MSB) in the data
shown in the binary or hexadecimal formats will be treated as a
sign. If MSB=1 the data is negative, if MSB=0 they are positive.

Always display '+ or -

This is a sub-setting for the Signed decimal and hex values option. If
both boxes are checked then the signs '+' and *-' will be displayed.

Leading zeroes for decimal
numbers

If the box is checked then each decimal data will be shown with a
number of zeros before the first significant digit - for example the
value of 256 will be presented as 00000256.

Reverse bytes in words
(LSB first)

If the box is checked then the order of bytes in words will be
reversed, e.g. the MSB will follow the LSB.

Reverse words in dwords

If the box is checked then the order of 16-bit words in 32-bit words
will be reversed.

Reverse dwords in gwords

If the box is checked then the order of 32-bit words in 64-bit words
will be reversed.

Non-printable ASCII
characters

The characters from the ranges 0x00...0x20 and 0x80...0xFF are non-
printable. The options here customize presentations of non-printable
ASCII characters in the ASCII pane of the buffer dump window.

Replace characters
0x00...0x20

If the box is checked then all the characters belonging to the range
0x00...0x20 will be replaced with the character dot (".") or space (''). The
pair of toggling radio buttons Replace with: sets the replacement
character - dot (") or space ('").

Replace characters
0x80...0xFF

If the box is checked then all the characters belonging to the range
0x80...0xFF will be replaced with the character dot ('.) or space (*'). The
pair of toggling radio buttons Replace with: sets the replacement
character - dot (") or space (*").

© 2015 Phyton, Inc. Microsystems and Development Tools

78 ChipProg Device Programmers

4.1.4.3.3 The 'Display from address' dialog

The dialog enables setting a new address that will become the first address of the visible part of the
Buffer Dump window.

Element of dialog Description

Type new address to Here you may enter any address within the allowed range.

display from:

History Displays the list of previously set addresses. Here you can pick one for
displaying the buffer dump.

4.1.4.3.4 The 'Modify Data' dialog

The dialog enables editting the data in the Buffer Dump window. The dialog can be invoked only when the
View button on the window's toolbar if off, otherwise the editing is blocked. To modify particular data in the
buffer appoint the location by a cursor and click the Modify button on the window's toolbar. Then enter
a new data value in the pop-up box or pick one from the history list. Or, alternatively, appoint the
location by a cursor and type ower the new data on the PC keyboard.

4.1.4.3.5 The 'Memory Blocks' dialog

The ChipProgUSB program allows complex operations with memory blocks. This dialog controls
operations with blocks of data within one selected buffer or between different buffers.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 79

¢ Operations with memary block

~Source
Buffer:

Sub-Level:

{* Code (16 ME], bytes
1D location (128 KB), byutes
" Data [128 KB). bytes

2| x|

— Operation — Deztination
' Fill with waluefz]: 'I Bulfer:
{~ Search for data; j ¥ Buffer #0
i~ Copy
" Compare
" Invert Sub-Level;
[Ilialc;Iate u:heu:klsum (% Code [16 MB), bytes
W [egate result .
1D Iocation [128 KB, byt
™ | write result b destination D DC?;;KFB .) bytes
0 AMD with walus; I—Ll atal). bytes

Start address: OB with walue: vI Start address:
II:I j 7 HOR with wvalue: vI II:I j
End address:
E =~
Full range |

v Ok

The dialog box splits in three columns. The Source parameters, shown in the left column, specify the
source memory area for the operations shown in the middle column. The operation’s result will be
placed in the area specified by the Destination shown in the right column. By default the destination is
equal to the source space. Two operations — Fill and Search - do not require a destination address so
the dialog disables the Destination radio button if these two operations are chosen.

Description

The start address of the memory area in the selected Source buffer, to
which the operation will be applied.

Element of dialog

Start Address
(of the Source)

End Address
(of the Source)

The memoryarea’s end address. It can be set only for the Source. After
the source address range is defined, the program automatically
calculates the destination area’s end address.

Full Range
(of the Source)

Sets the start and end addresses equal to the entire address space of
the selected target device.

Start Address
(of the Destination)

The start address of the memory area in the Destination buffer where
the result of the chosen Operation will be placed to.

The following operations are available through this dialog. Each operation starts when you click OK in the
dialog box. (see notes below).

Operation Description
Hil with Value Fills the source buffer with a value (or a sequence of values) specified in

the text box at the right.

Search for Data Searches the source memory area for a particular value (or a sequence

© 2015 Phyton, Inc. Microsystems and Development Tools

80

ChipProg Device Programmers

Copy

Compare

Invert

Calculate Checksum

Negate Result

Write Result to

Destination

AND with Value

ORwith Value

XOR with Value

Notes

1. The source and destination memory areas may overlap. But, since operations with memory blocks are

of values) specified in the text box at the right.

Copies a specified area of memoryto a new destination address. The
block can be copied within the same address space or to another one.

Compares contents of the specified source and destination memory
areas. The sizes of the source and destination areas are equal. If there’s
a mismatch, the mismatch message boxwill require permission to
continue the comparison.

Inverts the selected source area contents bit-wise and places the results
in the destination area.

Calculates the checksum, as a 32-bit value, for the source area of
memory. The calculation is done by simple addition. See the note below.

If the boxis checked then a checksum, calculated as a 32-bit value by
simple addition, will be then subtracted from zero (this is a known
method of the checksum calculation).

If this boxis checked a calculated 32-bit checksum will be written to the
destination sub-level beginning at a specified destination Start Address.
If this box s cleared the checksum will be displayed as a message only.

Performs bit-wise AND operation on the contents of the specified source
memory locations with the operand specified in the text box on the right
and places the results in the destination. See notes below.

Performs bit-wise OR operation on the contents of the specified source
memory locations with the operand specified in the text box on the right
and places the results in the destination.

Performs bit-wise XOR operations on the contents of the specified
source memory locations with the operand specified in the text boxon
the right and places the results in the destination.

carried out using a temporary intermediate buffer, the overlap does not corrupt the results.

2. The Copy and Compare commands use the blocks specified in the Source address space and the

Destination address space.

3. The checksum is calculated as a 32-bit value by simple addition. If a memory space has byte

organization, then 8-bit values will be added. If it has word organization then 16-bit values will be
added.

4. Logical operations (AND, OR, XOR) are performed with the contents of the Source address space,
while the operation result will be written to the Destination address space. The program takes care
of converting the operands to the appropriate memory size for a selected type of memory (16-bit for
the Prog, Datal6, Reg and Stack memory, 8-bit for the Data8 memory).

4.1.4.3.6 The 'Load File' dialog

The dialog defines parameters of the file to be loaded to the buffer.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 81

Element of dialog

Fle Name:

Enter a full path to the file in this box, pick the file name from a drop-
down menu list or browse for the file on your computer or network.

Fle Format:

The format of the file to be loaded can be selected here by checking
one of the radio buttons in the Fle Format field of the dialog.

Buffer to load file to:

Select the buffer in which the file will be loaded by checking one of the
Buffer# radio buttons. There may be just one such button.

Layer to load file to:

The Buffer to load file to can have more than one memory layer. Select
the layer in which the file will be loaded by checking one of the radio
buttons. There may be justa single button available for choosing.

Start address for binary
image:

Files in Binary file format do not carry any address information and
are required to define the start address for the loading. If the file to be
loaded is a binary image enter the start address in the box here.

Offset for loading
address:

Files in any formats, except the Binary file format, can carry the
information about the start address for the loading. If the file to be
loaded is not a binary image enter the offset for the file addresses in
the box here. The offset can be positive or negative.

4.1.4.3.6.1 File Formats

The ChipProgUSB program supports a variety of file formats that can be loaded to the ChipProg

buffers.

Fle format

Standard/Extended Intel

HEX (*.hex)

Binary image (*.bin)

Motorola S-record
(*.hex, *.s, *.mot)

Description

The Intel HEX file is a text file, each string of which includes the
beginning address to load the data to the buffer, the data to load,
checksums for the string and some additional information. The
ChipProgUSB loader supports both Standard and Extended Intel
HEX format.

The binary image includes the data to be loaded only. These data
will be loaded to the buffer beginning from a specified start address.

The Motorola S-record is a text file, each string of which includes
the beginning address to load the data to the buffer, the data to load,
checksums for the string and some additional information. The
ChipProgUSB loader supports all kinds of the Motorola S-records

© 2015 Phyton, Inc. Microsystems and Development Tools

82 ChipProg Device Programmers

Altera POF (*.pof)

JEDEC (* jed)

Xilinx PRG (*.prg)

Holtek OTR (*.otp)

Angstrem SAV (*.sav)

ASCII Hex (*.txt)

4.1.4.3.7 The 'Save File' dialog

with the extensions .hex, .s, .mot.

The Altera POF-file is a text file, each string of which includes the
beginning address to load the data to the buffer, the data to load,
checksums for the string and some additional information. The
format is mostly used for programming PALs and PLDs.

This format is used for programming PALs and PLDs. The JEDEC-
file includes the beginning address to load the data to the buffer, the
data to load, test-vectors and some additional information.

The Xlinx PRG-file is a text file, each string of which includes the
beginning address to load the data to the buffer, the data to load,
checksums for the string and some additional information. The
format is used for programming the Xlinx PLDs.

This format is presented by Holtek company. The OTP-file includes
the beginning address to load the data to the buffer, the data to load,
checksums for the string and some additional information.

This format is presented by Angstrem company (Russia). The SAV-
file includes the beginning address to load the data to the buffer, the
data to load, checksums for the string and some additional
information.

The ASCII TXT-file includes the beginning address to load the data to
the buffer, the data to load, checksums for the string and some
additional information.

The dialog defines parameters of the file to be saved from the buffer.

Element of dialog

Description

Fle Name: Enter a full path to the file in this box, pick the file name from a drop-
down menu list or browse for the file on your computer or network.

Addresses Start and End Addresses define the buffer data space that will be
saved in the Fle. For saving an entire buffer click the All button.

Fle Format: The format of the file to be saved can be selected here by checking

one of the radio buttons in the Fle Format field of the dialog.

Buffer to save file from:

Select the source buffer from which the file will be saved by checking
one of the Buffer# radio buttons. There may be justa single button
available for choosing.

Sub-level to save file
from:

The Buffer to save file from can have more than one memory layer.
Select the source layer by checking one of the radio buttons. There may
be just a single button available for choosing.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 83

4.1.4.4 The Device Information window

This window displays the type of selected target device and a list of programming adapters that fit all
available packages for the selected device. For example the picture below shows all Phyton adapters
available for the selected PIC microcontroller. The Socket scheme pictograms below show the correct
positions of a DIP-packaged 40-pin PIC chip and the adapter board into a 48-pin ZIF socket (for the
ChipProg -48 programmer).

| Socket Scheme | Motes t‘§

Device: Microchip PICT18LF4439
Adapter(z]: DIF: Hone
PLCC: AE-P44-plG
PLCC: AE-P44-p16-2
TQFP: AE-T44-p16
Socket scheme

SRR RPN EEEE
EENERERENENEENEEEEN

The adapter part numbers are linkable and the links being clicked opens the adapters.chm file with a
description and wiring diagram of the chosen adapter. The cable adapters for in-system programming
are also included into the adapters.chm file. There are some peculiarities that such ISP adapters use
depending on the target device type.

4.1.4.4.1 Phyton programming adapters

The adapters.chm file includes short descriptions of the Phyton programming adapters and their wiring
diagrams. Having the adapter diagram a ChipProg user can master it is own adapter or to find the
adaptor available from a third party, which can be used as a replacement for the Phyton brand adapter.

© 2015 Phyton, Inc. Microsystems and Development Tools

84

ChipProg Device Programmers

The adapters diagram are presented in a table form, where the rows show connections of the elements
installed on the adapter transition board and the columns (from the left to right) represent:

1st column - Pin numbers of the dual-row pins pluggable to the programmer ZIF socket

2nd column - Pin numbers of the ZIF socket installed on the adapter top

3rd, 4th, 5th, etc. - Pin numbers of the passive and active components installed on the adapter
board.

See an example of the AE-P44-A32/64 adapter connection table below:

Pin# of the dual-row 40-| Pin# of the PLCC 40- | 74HC14 | C1 (.1uF) | C2 (.1uF)
pin plug pin adapter socket latch
(ChipProg ZIF socket)

1 2

2 4

3 6

4 28

5 29

6 9

7 10

8 11

9 12

10 40

11 7

12 13

13 14

14 16

15 17

16 18

17 19

18 20

19 21

20 22,30,42 7 1 1
21 24

22 25

23 26

24 27

25 8

26 31

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 85

27 32
28 33
29 34
30 5
31 36
32 35,3,15,23 14 2
33 37
34 38
35 39
36 40
37 41
38 11

- 43 12
39 44 2
40 1

10,13

4.1.4.4.2 Adapters for in-system programming

The adapters.chm file includes short descriptions of the Phyton programming adapters for in-system
programming (e.g. the programming in the user's equipment) and their wiring diagrams the schematic of
connecting the adapter cables to the target. The cable adapters may have 10 to 20 pin headers to be
connected to the pins or complimentary connectors installed in the user's equipment. The pin
connection is specific for certain target devices. The connection diagrams are presented in a table form,
where the columns (from the left to right) represent:

1st column - Pin numbers of the cable adapter header inputs and outputs
2nd column - Signals of the target device to be connected

As an example see below a schematic of connecting a 10-pin header BH-10 of the Phyton AE-ISP-U1
cable adapter to the Zilog Z8Fxxx microcontroller for in-system programming.

BH10 Z8FXXXX

Vcc
RESET

o|~|o|als]w|N|e
v}
W
®

© 2015 Phyton, Inc. Microsystems and Development Tools

86

ChipProg Device Programmers

4.1.45

4.1.4.6

9

10

As you can see here not all the BH10 lines should be necessarily used. Only five signals are required for
programming this device and only two of them are used for sending the the programming signals into the
chip - RESET and DBG. The diagrams in the adapters.chm file use the mnemonic of signal from the
device manufacturers' data sheets.

The Console Window

The Console window displays messages generated by the ChipProgUSB program that can be divided
into two groups: the ChipProg error messages and what-to-do prompts. The window stores messages
ewen ifit is closed. You can open it at any time to view the last 256 messages, and get help for any of
them. The error messages are shown in red color, others in black.

The window should be large enough to watch several messages. To save screen space you can close
the Console redirecting all messages to the popping-up message boxes. To do this, go to the
Configure menu > Environment > Misc tab and select the Always Display Message Box option.
Alternatively you can select the Do not open box if Console window opened option, redirecting all
the messages to the Console window.

Click the Help button in the box or to invoke the ChipProg context-sensitive Help topic associated
with the error, or click the Close button and continue after correcting a parameter error.

Local menu and Toolbar

The local menu, which can be opened by the right mouse click, includes the Console window context
commands and dialog calls. Most, but not all, of the local menu lines are duplicated by the local toolbar
buttons displayed at the top of the window. Here are the local menu and toolbar items:

Menu Command or Call Toolbar Description
button

Clear Window Clear Deletes all the messages from the window

Opens the context-sensitive Help topic associated

Help on message MHel . . L .
P g P with the error or information in the highligted message

Help on window No button Opens the Console window Help topic

Help on word under Opens the context-sensitive Help topic associated
cursor No button | yith the word appointed by the cursor

Windows for Scripts

ChipProgUSB is featured with the windows specifically supporting operations with scripts. That includes:

(Script) Editor windows

Watches windows
User windows
I/O Stream windows

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 87

415

These windows cannot be open from the View menu; they can be opened only when you work with
scripts. Operations with these windows are described in the chapter Scripts Files.

Simplified User Interface

The ChipProg default graphic user interface makes heaw use of menus, windows and controls that are
redundant for mass production. Furthermore, an unskilled operator is usually employed for this work.
Programming a lot of chips of the same type with the same data is routine work that includes two
operations: replacing a target device in a socket and executing a preset batch of programming
operations (Auto Programming command). To prevent casual ChipProg mismanagement and to
simplify routine operations the ChipProgUSB enables switching the ChipProg graphical user interface
from the default mode to the Simplified User Interface mode (hereafter SUI). In this mode an operator
watches a very limited PC screen with only relevant information (see two SUI screen examples below).

Single site device programming mode

Gang device programming mode

¢ ChipProg-48 Simplified User Interface [msd-55¢] =5
Project: [MSD-55¢ Controller - Debug 2 (18 Hz) |
Device: STMicroelectronics STM32F030C6T [ISP SWD Mede]
Statistics: Total: 13, Good: 11, Bad: 2 E]
Verifying ®
S/N: Off, Checksum: Off @)
@ [0:00] J46% @
& start
X ? Hep

< ChipProg-G4 Simplified User Interface [msd-55¢] 3]

Project: \MSD-SSC Controller - Debug 2 (18 Hz)

]

Device: STMicroelectronics STM32F030C6T [ISP SWD Mode]
Statistics: Total: 21, Good: 20, Bad: 1

&)

Operation completed successfully [0:05, 11:22:46]
S/N: Off, Checksum: Off

% Start

Programming
S/N: Off, Checksum: Off

& [0:00] I

|26%

Operation failed [0:00, 11:22:50]
S/N: Off, Checksum: Off

& Start

Erasing
S/N: Off, Checksum: Off

i [0:01] [| 5520

00 000 ©C9 o000

? Hebp

The SUI mode is allowed only for use of ChipProg with one type of executing command: Auto

Programming.

A typical scenario of use includes two steps:

1. Setting. An engineer or a technician (hereafter a supenisor) sets the programming session using the
default ChipProg graphical user interface and stores the session project; then the supenisor switches the
user interface to the SUI mode and transfers control of the ChipProg to an unqualified operator;

2. Use. The operator then replaces the chips and presses the Start button (unless the programmer is
set to detect the device insertion automatically; in this case he/she just replaces the chips).

The project file can be stored on a PC hard drive with no restrictions for the project file location.

© 2015 Phyton, Inc. Microsystems and Development Tools

88

ChipProg Device Programmers

4151

The session project includes the device type, file name, serialization parameters, check sum, list of the
functions included in the Auto Programming batch and other options, including the SUI windows and
controls configurations, and the AutoDetect setting. The SUI interface settings include a list of pre-
configured projects, so an operator can launch a project from the list.

For launching the ChipProg with the SUI a supenisor can create an icon on the PC's desktop and
specify the project and configuration files.

Note! The ChipProgUSB does not protect the SUI project files and window configurations against
unauthorized modifications by an operator or any third party.

Settings of Simplified User Interface

Operations with Simplified User Interface

Settings of Simplified User Interface

First, make the following preparations for making a project that will control the programming session with
the SUI. Start from the following steps:

e Menu Configuration - select the target device;

e Menu Configuration - set up the buffer;

e Menu Configuration - set up options for the device serialization, writing check sum and signatures,
and log file controls;

e Windows Device and Algorithm Parameters Editor - specify the options different from default for a
chosen device.

¢ Windows Program Manager > tab Program Manager > the Edit Auto dialog - configure the Auto
Programming batch of functions;

¢ Windows Program Manager > tab Options - set the programming options;

¢ Windows Program Manager > tab Statistics - set a number of chips to be programmed and other
options
Working in the SUI mode disables counting down the programmed chips (this option can be set in the
tab Statistics), an operator can watch only numbers of successfully programmed and failed chips.
Other options set in this tab remain in force.

Second, create the project. Select the menu Project > New. In the Project Options dialog specify the
project name, file name and format and other options; then click the OK button to store the project. It is
absolutely crucial to store the project. Then follow to setting the SUI options.

Under the Configuration menu click the command Simplified mode editor. This will open the
Simplified Mode Setup window with the SUI window docked to the first window at left (see below). Any
changes made in the Simplified Mode Setup window immediately become visible in the SUI window.
Clicking the OK button in the Simplified Mode Setup window completes the SUI setup, the window
closes and the button Return to editing appears in the SUI window. This allows quick switching back
and forth from SUI session editing to programming chips.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 89

<@ ChipProg-48 Simplified User Interface [ATBIC52F - Release] [22 || simplified User Interface Setup -7 | (]
General Settings | Appearance
Project: |MSD-55¢ Controller - Debug 2 (18 Hz) v‘
Cument corfiguration: lATSBCEZF- Release ']
Chip: Dallas Semiconductor DS89C430 [Save] [Sevess. |
Statistics: Total: 0, Good: 0, Bad: 0] V] Auto-save configuration on 0K buttan
Projects
Rea dy O Use project:
) C:\Programming Projects'AirPump 18C055.upp
. _) C:\Programming Projects'MSD-55c Controller - Debug 1.upp
. @ C:\Programming Projects'MSD-55¢ Controller - Debug 2 {18 Hz).upp

@ Start lﬂ} Add... I la Remove from list I l@ Open project

[Allow operator to sslect project from the list

Start Operation
Ix Exit I I ? Help I ") When the device has been automatically detected in the socket
@ Explicitly by the "Start” button
Gang Mode
@ It own "Start” button for each socket
_) Single "Start’ button for all sockets

Allow operator to terminate operation

W oK | (X cancel | [2 Hep |

The General Settings Tab

The Current configuration field displays the name of the currently chosen SUI configuration. The
configuration files with the extension .smc are located in the folder SMConfig; this folder is located in
the working ChipProgUSB folder. The Save button allows saving the configuration under the name
entered in the field Current configuration; the Save as... button allows saving it under another name. If
the Auto-save configuration on 'OK' button box is checked then clicking the OK button at the bottom
of this tab will automatically save the current configuration and close the dialog.

The Projects pane lists all the projects associated with the current configuration. When you open the
Simplified Mode Setup window for the first time, the Projects list is blank. To add a project use the +
Add button. One configuration may include more than one project if it is necessary to enable an operator
to change projects without restarting the programmer. If Allow operator to select project from the list
box is checked, then the SUI window displays all the projects associated with the current configuration;
otherwise, it displays only one project selected from the Use project list. To remowe a project from the
Use project list, highlight it and click the x Remove from list button. This will remowe the project from
the list but not from the disc. The Open project button loads a selected project and does not close the
editor.

The Start Programming pane gathers appropriate settings. By checking the When the device has
been automatically detected in the socket radio button you allow immediate launching of the
programming operation upon detecting the chip in the ChipProg socket. If this option is checked, the
Start button (or buttons in the gang mode) in the SUI window will be replaced with the auto detect
acknowledgment indicator.

Alternatively, the programming operation can be initiated by operator manipulation. Check the Explicitly
by the 'Start' button radio button and, if you use the gang programming mode, check one of two radio
buttons: Its own 'Start' button for each socket or Single 'Start' button for all sockets. Checking the
Its own Start button for each socket option radio button allows an operator to replace a chip in a

© 2015 Phyton, Inc. Microsystems and Development Tools

90

ChipProg Device Programmers

socket and immediately press the 'Start' button so the chips are programmed asynchronously.
Checking the Single 'Start' button for all sockets option radio button allows an operator to insert as
many chips as desired in programming sockets at once (for example, 4 chips when using the ChipProg-
G41 gang programmer) and then to press any 'Start' button to initiate concurrent chip programming on
all programming sites. In this mode, replacing the target chips is possible only upon completing the

programming procedures on all sites.

The only Auto Programming command batch can be initiated by pressing the Start button. This
command can be executed either by pressing the mechanical button on the ChipProg unit or by clicking

the 'Start' virtual button in the SUI window.

If the box Allow programming termination by operator is checked, an operator is able to stop the
programming by clicking the Exit button in the SUI window, otherwise the operator can only initiate

device programming.

The Appearance Tab

Here you can individually choose the type, size and color of the Default Font for each element that can
be displayed in the SUI window: Project name, Device part number, Statistics, Device operation
status, and "Start" button. Move up and Move down allow customization of the element position in
the SUI window. By checking appropriate boxes under the Display elements titles you can enable

displaying them in the SUI window.

<@ ChipProg-48 Simplified User Interface [DS89C430 - Release] [22 || simplified User Interface Setup [~ 2|2z
Project: ’MSD-SSC Controller - Debug 2 (18 Hz) v] Default Fort
Chip: Dallas Semiconductor DS89C430 . Choose font...
Verdana (10)
Statistics: Total: 0, Good: 0, Bad: 0 [Choose color...
Ready '9 Display elements:
. [¥] Project =
® | wconne
B S
é% Device operation status
SIERE "Program” button
Settings for "Statistics™
’x Exit] ’? Help] [Frame [¥] Allow operator to reset statistics
Font
@) Default
(@ Custom: Verdana (10) Choose...
Font color at left Font color at right
() Defautt it
W ok | [cancel | [Heb |

Then, by highlighting an element enabled for display in the SUI window, you can individually set an
appearance of each element if you wish its appearance to differ from the default and from other
elements. Checking the Frame box causes a thin blue frame to appear around the element's field. Radio

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 91

buttons Font, Font color at left and Font color at right enable the creation of appearances that
distinguish the elements displayed in the SUI windows.

When the Statistics element is highlighted, the box Allow operator to reset statistics appears.
Checking this box enables an operator to clear the current programming statistics.

When the Device operation status element is highlighted, two extra boxes: Serial number and
Checksum appear. Checking these boxes enables the serial number and the check sum written into the
last programmed device to be displayed below the status line.

4.1.5.2 Operations with Simplified User Interface

To launch the ChipProgUSB with the Simplified User Interface (or in the Simplified Mode) in the
Command line mode use the key /Y <configuration name>. The key /Y and the <configuration
name> should not be separated by a space. If the <configuration name> includes spaces the name
should be quoted. For example:

C:\Program Files\ChipProgUSB\5 22 00\UprogNT2.exe /Y"DS89C430 - Release" ,
where the DS89C430 - Release is the configuration name.

When launched in the Simplified Mode the ChipProgUSB displays only the SUI window. The main
ChipProgUSB window remains invisible until an error occurs. When a programming operation fails, the
programmer behaves in accordance with the settings that control errors. These settings are available
through the menu Configure > Preferences. If the box Terminate device operation on error and do
not display error message... in the Preference dialog is unchecked (default setting) the
ChipProgUSB will issue an error message and prompt to either ignore the error and resume operation or
to terminate it. If this box is checked, any error will cause the programming session to come to a
complete stopp., The error message will not be issued.

4.2 Operations with Projects

Usually, operating with a device programmer includes a lot of preparations, such as: choosing a target
device, loading a file to be programmed into the device, customizing the programming algorithm, pre-
programming a batch of commands for the Auto Programming procedure, configuring the ChipProg user
interface, etc. These preparations inwlve opening tens of dialogs spread in several ChipProgUSB
windows, menus and sub-menus. The ChipProgUSB program enables storing all the settings in one file
known as a project. You can create and set up an unlimited number of projects for programming of
different devices, with different files and different parameters, and store them in the project repository
from where you can load them for execution by clicking your mouse, or by including the project name in
the command line. Operating with projects saves time and simplifies the programming job.

Use of projects is especially beneficial for production programming when a typical scenario includes
replication of a lot of chips programmed with the same data but different serial numbers. In this case it is
very convenient to create and lock a project that completely defines the programming session and then
allow a programming operation to a worker who will simply replace the chips being programmed and
watch the programming progress and results.

The matrix below lists major project options.

Option group Project options Where to set up...
Project name; Description; Permissions Menu Project - Options - Dialog Project
Options

Major properties

© 2015 Phyton, Inc. Microsystems and Development Tools

92 ChipProg Device Programmers
Option group Project options Where to set up...
(password, selected locking options); Files toj
be programmed into the device, File format,
Start and end address for file loading,
Destination buffers; Scripts to be preloaded,;
Desktop.
Device type; Auto Detect; Insert test; Check
device ID; What to do when the device)))
insertion is detected; Device parameters Menu Configure - Dialog Select Device;
. . . . Check box AutoDetect;
. (fuses, lock bits, special function registers, . .
Device i) ; Window Program Manager - tab Options
etc.); Programming algorithm (applicable Windows Device and Algorithm
chip sectors, voltages, oscillator frequency, | parameters Editor
etc.)
Menu Configure — sub menu Buffers;
Buffer name; Buffer size; Default fill value; Wmd_ow Bu_ffer — toolbar; Dialog Buffer
Buffers il) Configuration;
Swap file settings. Window Buffer — toolbar; Dialog Memory
Dump Windows Setup
Algorithm for programming serial numbers;
Serialization Custom signature patterns; Algorithm of the
eriaization, check sum calculation; Check sum formats; | Menu Configure —tabs of the sub menu
Check sum, Log)) T)
files Parameters and locations of log files to be | Serialization, Check sum, Log files
saved.
. Actions on certain events, issuing error
Actions on events) .
messages and sounds, logging results. Menu Configure — sub menu Preferences
Screen configuration, fonts and colors in
Graphical User W|_ndows, keymapplngs, messages and Menu Configure — sub menu Environment
Interface miscellaneous settings.
Number of chips to be programmed and
Statistics associated settings. Window Program Manager - tab Statistics
You can create, edit and save projects within the ChipProg Graphical User Interface - read about the
Project Menu and associated dialogs. The project files have the extension .upp.
Note! The ChipProgUSB software does not automatically save changes of the project options upon
quitting the program. You must execute the Save or Save as command from the Project menu to
presenve project changed made in all user interface setting dialogs since opening this project.
4.3 Command Line Control

The ChipProg programmers can be driven in the Command Line mode. Acommand line begins with the
registered application name UPROGNT2.EXE followed with a number of options that specify certain
ChipProg functions and settings. Sometimes these options may be also called keys. The command line
may also optionally include a name of the project file that controls the programmer operations.

Here is the command line format: UProgNT2.exe [option 1] [option 2]...[Name of the project file] [option

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 93

3] [option 4]... , where the command line elements in square brackets (options and project name) are
optional and may follow in any order separated by spaces. The square brackets characters are not parts of
the option or project name.

Each option begins with one of two characters: either ‘/' (slash) or ‘- (hyphen) followed by the reserved
names listed in the Command line options table. The /' (slash) and ‘- (hyphen) characters in command
line options are absolutely equivalent. For example: ‘/L’, isthe same as‘-L".

Characters in the command line options, project names and the application executable name are case-
insensitive, so there is no difference between the /A’ and ‘/a’ options. If the file name includes spaces the
file name should be quoted. For example: -L"Data file 5.hex".

Some options in the Command line options table require additional parameters; these are shown in this
table in angle brackets (< >). These parameters specify file names, devices, text strings, serial numbers, etc.
that should follow options without a space. For example: "/LData file 5.HEX" (load the Data file 5.HEX to the
buffer right after launching the programmer) or "/FH” (the file format is hexadecimal).

Upon executing a command line the ChipProgUSB checks whether a project loaded before the program has
been closed at the previous programming session. If it has, the program automatically reloads this old
projectunless a new project name is specified in the command line.

There is no difference between loading a project by executing a command line, or loading it manually by
means of the ChipProgUSB user interface menus.

Here are a few command lines examples:

1) UProgNT2.exe -C"Atmel*AT89C51ED2 [ISP BL Mode]" -L"C:\Work\Output Fles\Bin\Serial.bin" -
FB0x2000 -A -12

Right after launching the ChipProgUSB application:

-C"Atmel"AT89C51ED2 [ISP BL Mode]" - select the Atmel ATB9C51ED2 [ISP BL Mode] device;
-L"C:\Work\Output Files\Bin\Serial.bin" - then load the file C:\Work\Output Files\Bin\Serial.bin into the buffer
#0;

-FB0x2000 - specify the binary format for the Serial.bin file with the start address 0x2000 in the buffer;

-A - then begin the Auto Programming session using the default set of commands programmed in the Auto
Programming menu;

-12 - make the ChipProgUSB main window invisible, when the Auto Programming session completes. ifan
error occurs, copy the error message to the clipboard and close the ChipProgUSB application.

2) UProgNT2.exe "C:\Work\Programmer Projects\Nexus.upp" /Al

Right after launching the ChipProgUSB application load the project file ‘Nexus.upp’ from the folder C:\Work
\Programmer Projects\ and launch the Auto Programming session from buffer #1. If the programming was
successful, close the ChipProgUSB application. The ChipProg main window remains visible.

3) UProgNT2.exe

Launch the ChipProgUSB with no options.

© 2015 Phyton, Inc. Microsystems and Development Tools

94 ChipProg Device Programmers

43.1 Command line options

An option hame begins with one of two characters: either ‘/’ (slash) or *-* (hyphen), followed by the
resened names listed below. The ‘/’ (slash) and ‘-* (hyphen) have the same effect; there is no difference
whatever. For example, ‘/F’, -L".

Options Description

This option launches the ChipProgUSB in the multi-programming (gang) mode.
In this mode the ChipProgUSB software drive multiple programmers, i.e. either
a ChipProg-G4 or ChipProg-G41 gang programmer or multiple single-site
ChipProg programmers connected to one computer. You must use this keyto
control the ChipProg-G4 or ChipProg-G41 gang programmers. The -N, -P and -R
keys below may not be included in the same command line with the -GANG key.

-GANG[:<number of
sockets>]

The /GANG key can be supplemented by a parameter [:<number of sockets>]
that specifies a number of programming modules in the controlled gang
machine or a programming cluster. For example, the /GANG[:<2>] key says
that USB communication will be established only with two first programming
modules in the gang machine. This allows to expedite establishing USB
communication with the gang programmer. If the ChipProgUSB has been
launched with the -GANG key the program waits up to 16 sec or until all
multiple of 4 device programmers were detected, whichever happens earlier.
For example, the -GANG[:<2>] key stops establishing USB communication
when first two programming modules were detected.

- This option opens the ChipProgUSB program with a device specified as a
C"<manufacturer combination of the device manufacturer and device part number separated by
Ndevice>" the ~ character. The device specified in a previously loaded project will be
replaced by a device specified by the -C"<manufacturer”device>" key. For

example: /C"Atmel*AT89C51".

-L<file name> This option loads the <file name> file into the ChipProg buffer
immediately after launching the ChipProgUSB program. If other files were
previously loaded with some project then a new one will be loaded in
accordance with the file format and start address. The loader automatically
recognizes the file format in accordance with the file extension. If an actual
file format differs from one listed in the file format list, use the option -F;
this option enables you to explicitly specify the file format (see below).

-F<file format> This key explicitly sets the format of the file specified by the option -L<file
name> abowve. The <file format> is specified by one of the following
letters:

H - standard or extended Intel HEX format
B - binary format

M - Motorola S record format

P - POF (Portable Object Format)

J - JEDEC format

G - PRG format

O - Holtek OTP format

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 95

V - Angsrem SAV format

For example: the option -FH loads a file in the HEX format, which defines
the start destination address in the ChipProg buffer.

If the binary format (B) is specified by the option -F then it may be
accomplished by a hexadecimal value that specifies the destination start
address of the file to be loaded. For example: the option /FBFFO04 loads a
binary file and places the data at the address FF04h in the buffer.

If a command line includes a key -F<file format> but does not include a
key -L<file name>; i.e., it specifies the file format but does not specify
the file name itself, the -F<file format> option will be ignored.

Note that use of the -C, -L, -F command line keys is less beneficial
than use of projects, which allows much more flexible and effective
control of device programming. It is highly recommended, and
especially for mass production, to open, configure and store as
many projects as you need and launch them from a command line. .

-A[buffer number]

This option initiates the Auto Programming session in accordance with
other command line options immediately after launching the ChipProgUSB
application. It closes this application in case of successful completion. In
case of error the ChipProgUSB application remains suspended until it is
closed manually. If the [buffer number] is omitted then the data for Auto
Programming are taken from buffer #0; otherwise from the buffer number
that follows the -A. For example: the option -A2 specifies that data for the
Auto Programming session will be taken from the buffer number 2..

It makes sense to use the -A option only when including in the command
line a project name or the -L<file name> option.

This key makes the ChipProgUSB application main window invisible until
a programming error occurs. In case of error the window appears on the
PC screen along with the error message. Use of this option makes sense
only if the option -A (Auto Programming) is included in the same
command line. Otherwise the -l option will be ignored.

This key is similar to the -I key but use of the -I1 holds the ChipProgUSB
application main window invisible even if a programming error occurs. The
first occurrence of a programming error returns the error code 1 and closes
the ChipProgUSB program. (A successful Auto Programming session ends
with returning the code 0). These return codes can be conveniently used by
an external application that controls the ChipProg remotely; for example,
LabVIEW, similar programs or batch files.

This key is similar to the -I key, but use of -12 holds the ChipProguUSB
application main window invisible, suppresses displaying error messages,
but copies them to the Windows clipboard.

© 2015 Phyton,

Inc. Microsystems and Development Tools

96

ChipProg Device Programmers

Including this key in the command line launches the ChipProgUSB software
in the demo mode, which does not require use of the ChipProg hardware
and real data exchange between a computer and the programmer hardware.
Use of this mode is convenient for product evaluation without the ChipProg
hardware.

Important! The three keys below - -N<serial number>, -
P<identifier> and -R - allow control of one single-site programming
module, either from a cluster of similar multiple programmers or
inside a gang device programmer, but only when the programmers
are not driven in the gang mode. These three keys may not be used
with a combination of the key -GANG.

Use of these keys may be convenient when, for example, it is
necessary to program two different files into two different device
types on two pairs of programming sites of the Phyton gang
machine. In this case each pair of programming modules specified
by the -R or -P keys can perform two different programming jobs
simultaneously.

-N<serial number>

This key enables operations with a particular single-site ChipProg
programmer from a cluster of multiple programmers driven from one PC but
only when these programmers are not controlled in the gang mode (with
the key -GANG). Each single programmer has its own unigue serial
number (<serial number>) enabling you to address it by this serial
number. A serial number can be found on the bottom of the programmer
case or, better, by opening the menu Help > About... . Serial numbers of
all single programmers connected to one PC are also available in the
"Choose programmer" dialog that the ChipProgUSB program opens if the
command line does not include the options -N or -P. For example, the
option -NPHP10012A apecifies that all other command line options are
applicable to the programmer with a serial number PHP10012A only.

-P<identifier>

This key is similar to the -N abowe but it defines a single module in the gang
machine or in a programming cluster by setting the site number following a
reserved text identifier "Phyton Gang Programmer" for the programmers
driven by the ChipProgUSB software and "Phyton Fast Gang Programmer"
for the programmers driven by ChipProgUSB-01. For example, the option -
P"Phyton Gang Programmer #2" defines that all other command line options are
applicable exclusively to the programming module #2.

This key is applicable only for operations with Phyton gang programmers
(ChipProg-G41 and ChipProg-G4) but only when it is necessary to operate
with a particular programming module inside of these gang machines;
i.e., not in the gang mode. Since all single programming modules belonging
to each ChipProg gang programmer have the same serial number it is
impossible to address the programming site by a serial number (key -N).
When one of the mentioned gang programmers is launched from the

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 97

command line, including the -R option, this opens the dialog prompting a
user to specify a particular number of the programming module inside of the
gang machine. It is possible to use the key -P for choosing a programming
module with a specified socket number.

-S<file> This key replaces a default session configuration file UPROG.ses by a new
one with the name <file> and the extension .ses. The session
configuration file stores major ChipProg settings, and includes a name of
the last working project; it resides in the ChipProgUSB folder. The new
session settings will be used by the ChipProgUSB right after the command
line execution.

-O<file> This key replaces a default gption configuration file UPROG.opt by a new
one with the name <file> and the extension .opt. The option configuration
file stores the target device type, file options, etc.; it resides in the
ChipProgUSB folder. The new options will be used by the ChipProgUSB
right after the command line execution.

-D<file> This key replaces a default desktop configuration file UPROG.dsk by a new
one with the name <file> and the extension .dsk. The desktop
configuration file stores the computer screen configuration, i.e., positions,
dimensions, colors and fonts of all opened windows; it resides in the
ChipProgUSB folder. The new ChipProgUSB desktop configuration will be in
force right after the command line execution.

-ES<file> This key executes a script file, whose name follows the key -ES, right after
launching the ChipProgUSB application. If the command line does not
include the -ES key, the ChipProgUSB application searches for the script
file named ‘Start.cmd’ in the programmers’s working folder and, if such a
script file exists, it executes this script.

4.4 On-the-Fly Control

The On-the-Fly Control feature was introduced in the ChipProgUSB software version 6.00.00 and does
not exist in older software versions.

Use of the On-the-Fly Control is very similar to command line control but this utility enables controlling
a ChipProg programmer that is already launched and running, without stopping and restarting it. On-the-
Fly Control can issue commands allowing any operation that can be executed on the target the device,
including Read, Program, load a project, launch a script, etc. With the On-the-Fly Control utility you
can control a working ChipProg from the Windows batch files of third-party graphical packages such as
LabVIEW.

The On-the-Fly Control utility is an alternative to the more advanced Application Control Interface (DLL
contral); use of the latter requires some programming skills.

The OFControl.exe executable file resides in the folder where the ChipProgUSB is installed. It is
recommended that you keep it in this folder and launch it from this folder. Once launched, the utility

© 2015 Phyton, Inc. Microsystems and Development Tools

98

ChipProg Device Programmers

44.1

does not modify its working directory..

After completion, the On-the-Fly Control utility issues return codes. The code will be 0 (zero) in case
of success. Specific error codes are listed in the UPControl return codes section. The program dumps
error descriptions to the Console window and, optionally, to the log file and/or Windows clipboard.

Upon completing the On-the-Fly Control job the ChipProg keeps working unless the utility has not been
launched with the key -X. You may re-launch the On-the-Fly Control utility to control the same device
programmer but remember that only one On-the-Fly Control utility can feed each working device
programmer at a time. So, if you launch a second copy of the OFControl.exe file while the ChipProg
device programmer is under control of a previously launched copy of the utility, the second copy will not
"find" the device programmer.

The On-the-Fly Control command line format:
OFControl.exe [Options] [@<Option File>] [Options]

An option begins with one of two characters: either */’ (slash) or *-* (hyphen), followed by the resened
names listed below. The ‘/’ (slash) and *-* (hyphen) have the same effect; there is no difference whatever.
For example, ‘/L’, -P’. Though the aptions in the command line may follow each other in any order, the
utility will execute them in a certain logical order. For example, operations with a target device will be
executed only after loading a project and launching a script, regardless of the option order in the
command line. There is one exception for the -F<device operation list> and -A options. These options
define an order of operations with the target device and so they must be executed in accordance with
their order in the command line.

Note: In the descriptions of the command line option formats, optional parameters are shown in square
brackets []; in the actual option notation these brackets should be omitted. The angle brackets below
<> senes for a clearer presentation only and should be omitted in the option notation. For example,
instead of -G[+] use -G+; instead of -G[+][<C:\Temp\UPC.log] use -G+C:\Temp\UPC.log.Enter topic text
here.

If a file name in the option includes spaces, the full name with the path should be used. Any additional
information belonging to the option should follow it with no spaces. For example, -L"H:\Program Files
\ChipProgUSB\6_00_00\UprogNT2.exe /g". Here the file name and path is framed with the quotation
characters ("") and there is no space between the /L and the option's ending.

The @<Option File> construction refers to the text file from which the On-the-Fly Control utility
should fetch a number of options. Each option in such a file can be listed as a separate string. For
example: :

UPControl.exe -D @response.txt -WK

Lines in the option file beginning with the semicolon sign (;) are treated as comments and ignored. A
commented example of the file response.txt is listed in the topic Option File example.

On-the-Fly command line options

Options of the OFControl.exe command line

The command line format is: OFControl.exe [Options] [@<Option File>] [Options]

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 99

Note: In the descriptions of the command line option formats optional parameters are shown in square
brackets [], in real option notation these brackets should be omitted. The angle brackets below <>
senves for a clearer presentation only and should be omitted in the option notation. For example, instead
of the -G[+] use the -G+; instead of -G[+][<C:\Temp\UPC.log] use the -G+C:\Temp\UPC.log.

Option

Description

-D

Include extended information to the Console dump and in the log file if it
is specified. This option if helpful for On-the-Fly Control utility
debugging.

-G[+][<log file name and

Duplicate records outputting to the ChipProgUSB Console window to a

path>] log file. If the + sign follows the -G option name the information will be

appended to the end of the log file, if it exists. Absence of the + sign will
force creation of a new log file. The default name of the log file is
OFControl.log and it resides in the ChipProgUSB working folder but
you can specify a new file name and location.
Examples:

-G - create a new log file, named OFControl.log, in the
OFControl.exe working folder.

-G+ - append records to the OFControl.log file if it exists. If it doesn’t
exist, create it and append records to the file.

-G+C:\Temp\OFC.log - append records to the C:\Temp\OFC.log file if it
exists. If it doesn’t exist, create it and append records to this file.

-WK Keep the On-the-Fly Control running until any key on the keyboard is

pressed. This allows looking up the utility output in the Console window
before it exits.

-L< ChipProgusB
executable file name and
command line options>

Launch the ChipProg device programmer if it is not running. If it was
already launched the option will be ignored. The On-the-Fly Control
utility executes the -L option before any others specified in the
command line: before loading a project, launching scripts, or any
operations with the device. The -L option is incompatible with use of
the -R option (see below).

Example: -L"UProgNT2.exe /gl1"

-R<device programmer's
serial number>

If more than one ChipProg device programmers are working under
control of the PC in the gang mode, connect and drive the unit whose
serial number is specified by this option. This option is incompatible with
use of the -L option. If more than one programmer is working under
control of the PC and the On-the-Fly Control utility does not include
the -R option, the utility returns an error (#14).

Copy an error text to the Windows clipboard. If the On-the-Fly Control
utility completes and returns the code = 0, then an error has taken place
(with the exception of the reaction to the -T option, see below). If the
command line includes the -C option, the error description will be copied
to the clipboard; otherwise the clipboard contents remain unchanged.

© 2015 Phyton, Inc. Microsystems and Development Tools

100

ChipProg Device Programmers

If more than one operation on the target device specified in the On-the-
Fly Control command line returns errors, then, if the command line also
includes the -I option (ignore errors), descriptions of all the errors will be
copied to the Windows clipboard.

-M[=<timeout in seconds>]

Specify a timeout in seconds of waiting for readiness of the device
programmer before certain events: loading the project, launching scripts
and a chain of the programming operations and quitting triggered by the
-X option. If the -M option is not specified, the On-the-Fly Control utility
does not check whether the ChipProgUSB is in the stop mode so an
attempt to launch a programming function will cause quitting the utility
with an error.

If the -M option is specified without the [=<timeout in seconds>]
parameter then the On-the-Fly Control utility will indefinitely wait for the
programmer readiness. In this case you can break the utility execution
and quit by pressing the Ctrl+C keys.

Stop an operation with the device. If the ChipProg executes a
programming function (Read, Program, Verify, etc.), the operation will be
interrupted. This action takes place prior to all the actions specified by
the options -P, -S, -F, -X. It is possible, however, that the -B option
does not cause a break of an operation on the target device. This
happens when the utility issues an interactive operation error dialog that
requires an action of the operator. In this case, the On-the-Fly Control
utility exits with an error code.

-P<project file>

Load a specified project file. Project files with .UPP extensions include
all the information and settings for a programming session (device type,
file(s) to be written to the device, customized device and algorithm
parameters, interface settings, device serialization options, scripts,
etc.).

Before loading the project the On-the-Fly Control utility waits until the
programmer stops the operations on the device (see the -M option). If
the -P option is specified in the On-the-Fly Control command line
along with the -S and/or -F options, then the project loads before
launching scripts and any operations with the target device.

Example: -P"C:\Prog\Projects\Antenna-01 Test.upp"

-S<script file>

Launch a specified script. Before starting a script the On-the-Fly
Control utility waits until the programmer stops the operations on the
device (see the -M option). By default the On-the-Fly Control utility
waits for the the script completion. To allow the On-the-Fly Control
utility to continue working while the script is running, add the -NWS
option to the option list.

Example: -S"D:\Prog Scripts\Checksum.cmd"

-NWS

Do not wait for completion of the script specified by the -S option.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 101

-F<function list>

Execute listed operations (functions) with the target device. Names of
the functions in the list should be separated by semicolons (;). In order
to execute the Auto Programming function the -F option should be
followed by an asterisk character (*).

If the command line includes more than one -F option they will be
executed in the order in which they are specified in the command line.

If the -F option(s) is (are) specified in the command line along with the
options -P (load project) and/or -S (launch script) then all the functions
specified by the -F option(s) will start after loading the project and/or
launching the script.

By default the On-the-Fly Control utility waits for function completion.
To enable the utility to keep running while the function specified by the -
F option is also executing, add the -NWF option to the command line. In
this case you may include only one -F option in the command line.

If the -F option specifies a sub-function displayed in the drop-down
menus of the Program Manager function tree, then specify both the
menu name and the function itself, separated by the '' character. For
example: -FProgram (for the Code Memory chip layer) but -FData
Memory”~Program (for the Data Memory) .

Examples:

-F* - launch the Auto Programming function.

-FErase;Blank Check;Program;Verify - erase the device, check if it is
blank, write the file from the programmer buffer and compare the buffer
and device memory contents.

"-F*;Verify;Device Parameters”Program HSB and XAF" - execute the
Auto Programming function, then compare the buffer and device memory
contents, then launch the function Program HSB & XAF from the Device
Parameters sub-menu.

-NWF

Do not wait for completion of the function specified by the -F option. This
option is incompatible with the -X option.

Ignore errors that occur during programming operations. By default the
On-the-Fly Control utility stops operations with the target device in
case of any error. The -l option enables the operations regardless of the
result that allows logging of all the errors that occurred.

-T[+][W=<delay in
milliseconds>]

Get the programmer status ["Ready"” or "Busy"]. The On-the-Fly
Control utility returns the code O (zero) if the ChipProg stops and is
ready for executing a programming operation, or 1 if the programmer is
in the process of operating with the target device ("Busy").

If the '+' sign is present in the -T option declaration then, if the
programmer operates on the target device, a current function name
(Read, Program, etc.) will be output to the Console window along with
the percentage of the function being executed. For example: Program,
87%.

© 2015 Phyton,

Inc. Microsystems and Development Tools

102

ChipProg Device Programmers

4.4.2

The optionally specified [W=<delay in milliseconds>] parameter sets
a delay before getting the programmer status. Delays allow checking the
programmer status within a settable period of time.

Examples:

-T - get the programmer status "Ready"” or "Busy"

-TW=1000 - wait for 1 sec, then get the programmer status "Ready" or
"Busy"

-T+ - get the programmer status "Ready" or "Busy". Then output to the
Console window the name of the currently executed function and the
percentage of its completion. An example of the function status string:
Read 56%.

V=[0 | 1]

Hide (-V=0) or make it visible (-V=1) in the ChipProgUSB main window.

If the ChipProgUSB main window is hidden, the programmer will be
invisible among other open applications in the Applications tab of the
Windows Task Manager. So, in order to close the running
ChipProgUSB program you will have to open the Process tab of the
Task Manager, then locate and highlight the programmer executable
name (UprogNT2.exe) and click the End Process button.

Stop the programmer and quit the program. To quit the ChipProgUSB
program, the programmer must complete all the previously launched
operations on the device. So the On-the-Fly Control utility waits for
completing the current programming operation for a timeout period
specified by the -M option. If this option is omitted or the timeout period
expired the On-the-Fly Control returns an error code.

-? or-H

Output a brief description of the On-the-Fly Control utility options and

quit.

On-the-Fly utility return codes

After completion, the On-the-Fly Control utility issues a return code of O (zero) in case of success.
Otherwise it issues one or more of the error codes listed below. It returns the codes to the application or
to a batch-file that called the utility. There is one exception that is associated with the option —T. Then
the utility returns O if the programmer was stopped and 1 if it is operating on the target device.

The utility prints errors on the Console and, optionally, writes them to the log file and/or Windows
clipboard.

Return codes:

0

Successful completion.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 103

The —T option was specified and the programmer is busy executing an operation on device.

Wrong option, parameter or parameter format in the command line.

Error calling a Windows API function; it could be caused by an abnormal exit of the programmer

software.

The programmer application was closed while the On-the-Fly Control utility has been waiting for

a response. Possibly a user has forced closing the program.

The timeout, which was set by the -M option for stopping the programmer, has expired.

The programmer was launched in the gang mode but an option in the On-the-Fly Control utility

tried launching a function not applicable for gang programmers.

Cannot execute a required action because the programmer is busy with operation on the target

device.

Failed to load the project specified by the -P option.

Failed to launch the script specified by the -S option.

10

General error.

11

The programming function specified in the -F option does not exist for the selected device.

12

An error occurred while the programmer operated with the target device.

13

The programmer could not complete an operation and close the program after receiving the -X

option request.

14

More than one device programmers is running. This requires the -R option use.

443 On-th

e-Fly Control example

; Launch the programmer in the diagnostic mode unless it is already working
-L"C:\Program Files\ChipProgUSB\5 25 00\UProgNT2.exe /g1"

; Appe
_G+

:1f the
-M=30

nd records to the log

programmer is busy wait for 30 seconds max

; Load the project. The FuelPump-08.upp project file locates in the folder D:\Projects
-PD:\Projects\FuelPump-08.upp

; Execute the csm-16.cmd script located in the folder D:\Scripts
-SD:\Scripts\csm-16.cmd

© 2015 Phyton, Inc.

Microsystems and Development Tools

104

ChipProg Device Programmers

; Execute auto programming using parameters defined by the FuelPump-08.upp project

-F*

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 105

4.5 Script Files

The ChipProgUSB program can execute so-called script files in a way similar to how the MS DOS
executes the batch files. The script file mechanism was implemented in the ChipProgUSB in order to
automate usage of the ChipProg programmers. By means of script files you can, for example,
automate loading files to the programmer buffers, calculating checksum, launching device
programming, pausing programming in case of an error, manipulating windows and performing many
other operations. It is also possible to display various messages in the Console window or other
special windows generated by the script itself, including displaying graphical data in special windows;
to create user's custom menus, etc. The script language is similar to C program language; almost all
C constructions are supported, except for structures, conjunctives and pointers. There are also many
built-in functions available, such as printf(), sin() and strcpy(). The extension of script source file is
.CMD.

When the ChipProgUSB program starts, it searches for the script with the reserved name START.CMD. So, if
you wish the ChipProgUSB program would automatically perform some operations immediately after you
launch the program, you can create a special script. The ChipProgUSB program begins searching for the
START.CMD in the current directory on the disc, then it searches for this scriptin the directory where the
ChipProgUSB.exe file resides. If the START.CMD is not located then a default ChipProg shell will open.

The scrips controls and associated dialogs and windows are concentrated under the Script menu.
The major dialog that controls scripts is the Script Files dialog.

See also:
Simple example of a script file
How to write a script file
How to start a script file
How to debug a script file
Description of Script Language
Script Language Built-in Functions
Script Language Built-in Variables
Difference Between the Script Language and the C Language
Alphabetical List of Script Language Built-in Functions and Variables

45.1 The Script Files Dialog

This dialog is used for controlling the Script Files, it allows to start, stop and debug scripts.

© 2015 Phyton, Inc. Microsystems and Development Tools

106

ChipProg Device Programmers

3 Soript Files

Script filez list

[CHECKSUM_"CHECKSL -0
CHE

CESUM_Z2 "CHECKSUM_2" Id: 4. Stopped, PC=0|

Start new zcnpt file

Scrpt file name:

d:hmanualshop ruzziansonpt exampleshchecksunm_2 crd

Defines:

Hinclude-file directories:

Debug [open Script Source window]
Auto-zave schpt file sources

In the upper window of this dialog you see the list of loaded script files with the current state of each file.
Any script can be in one of the following states:

The scriptis waiting for an event. This state is initiated by calling certain

wait functions in the script file text (for example, Wait).

State of Fle Description

Stopped Execution of the scriptfile is temporarily stopped.
Running The scriptfile is being executed.

Waiting

Cancelled

from the memory.

The script execution is terminated, but the script file is not yet unloaded

To select a script file, highlight its name in the window. The four buttons on the right of the list control the

highlighted script:

Button

Terminate

Terminate All

Description

Unloads the selected scriptfile if it can be unloaded. Otherwise, it sets up
the Unload Request flag for the selected script that then goes to the
Canceled state.

Unloads all scriptfiles visible in the window.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 107

Restart Restarts a highlighted script file.

Debug Switches to the Debugger mode for the highlighted script file. This
command stops execution of the script and opens it in the source
window of the script for debugging. If the scriptis in the wait state, then
execution will immediately stop after the script returns from the Waiting
status.

When you use several script files simultaneously and unload or restart some of them, remember that
script files can share global data and functions. If one script accesses data or the functions belonging to
another one thatis already unloaded, then the scriptinterpreter will issue error messages and the active
script file will be also be unloaded (terminated).

The buttons and fields in the lower part of the dialog box control the script files starting:

Element of dialog Description
Script Fle Name Specifies a name of the script file to be loaded. You can either typed in the

file name with a full path to the box or to take it from the drop-down history
list or browse it from a computer disc.

Browse Opens the Load/Execute Script Fle dialog for locating and loading script
files into the Script Fle Name box.

Defines Defines the processor text variables for compilation. For more information,
see below the Processor text variables.

#include-file Specifies the directories in which the script file will search for the files

Directories specified in the #include <file_name> directive(s). To specify more than

one directory, separate them by semicolons. The current directory is
scanned as well.

Debug (open Script If this boxis unchecked, a script file automatically starts execution upon the

Source window) file loading. If the boxis checked, then upon loading a script file, the
program immediately opens the window for debugging the script. See also
How to Debug a Script File.

Auto-save Script Fle If this boxis checked when you click the Start button ChipProgUSB
Sources automatically saves the source texts of all script files visible in the Script
Source windows.

Start Starts the script file specified in the Script Fle Name box.
Processor text variables

The content of the Defines text boxis equivalent to the #define directive in the C language. For example, if
you type DEBUG in this text box, the result will be as if the #define DEBUG directive is placed in the first
line of the script source text.

You can specify values for variables. For example, DEBUG=3 is equivalent to #define DEBUG 3.

You can list several variables in a line and separate them with semicolons. For example:
DEBUG Passes=3; Abor t =No

Also, see Predefined Symbols at the Script File Compilation.

4.5.2 How to create and edit script files

Ascript file is similar to a source program text written in programming language (C, for example), e.g. a

© 2015 Phyton, Inc. Microsystems and Development Tools

108 ChipProg Device Programmers
scriptfile can be created and edited either in the Editor window by the ChipProgUSB built-in editor or by
any other editor. You can allocate script files in your work directory or in the directory where the
ChipProgUSB program is installed.
Normally the Editor toolbar that collects all the edit function buttons is hidden. To create a customized
editor toolbar right click on the blank area of the main toolbar, select the Customize line in the drop-down
menu and check the boxes of the editor functions which you would like to make visible.
To open a new script file for editing open the Script menu > Editor window > New. This will open a blank
window below. Right clicking within the window pops up the Editor command menu that includes the
buttons which you can bring up to the local Editor toolbar. Here the toolbar is shown above the window.
: 2] ; R ea 2 = B B A L
DHA S & E ER L e
?noname? (1,1} 2a3a ﬂ_|
| Save |SaveAs| | | Faste | Search | Nex‘cSrc| Repl | | ; :
iahs | Statish
% tect off
Pl , B
b save file Ctrl45 l_
B save file as...
= Prirt. ..
Bh
.
Al L] Paste Ctrl+Y, Shift+Ins
(@ Search For test... Ctrl+F
: Algoarithrn . "Palling [Fragrarnming algorithim 7l Repeat search F3
Yop 12.00% | High program voltage é_-tl_ Search/Replace. .. ChrlHH, Chrl+P
Yoo 500 Fower supply voltage % s,
Display From line number. .. Chrl4L
ity Set bookmark, ., Ale+[
[Retrieve bookmark, ., Ale+]
[Socket Scheme | Motes| % Condensed mods F12
T Atmel ATEICH1 ‘ﬂ' Condensed mode setup Chrl4+F12
Adapter(z]: DIF: Hone !
PLCC: AE-P44-i51 [tine :”bmbers |
PLCC: AE-P44.i51.7) Match bracefcomment Al
TQFP: AE-T44-i51 o3
SOCREL SChele User Scripts 3
Help on window. .. F1
Help on word under cursor Alk+F1
Properties 4
i
Now you can compose your script rightin the window.
Note that you should not use the punctuation characters (braces, dash, etc.) in the script file name.
When you complete the file composing click on the Save button on the window local toolbar or on the
Editor toolbar and the program will prompt you to name the script file and to specify its location.
4.5.2.1 The Editor Window

Commands of this menu refer to the currently active Edit window.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 109

0 (3 L

o\

4,5.2.2 Text Edit

New

Open...

Save
Save As...

Print

Properties..

Opens the Editor window for a new script file.

Opens the Open file dialog to load a script file for editing. The file
name and path can be either entered or browsed here.

Saves the file from the currently active window to a disc.

Opens the Save file as... dialog.

Opens the standard Print dialog for the default printer. You can
printan entire file or a selected text block.

The common properties for open files.

Commands of this menu refer to the currently active Edit window.

Button

6

L &

=

Command

Undo

Copy

Cut

Paste

Clipboard History/
Repository

Append to
Clipboard

Cut & Append to
Clipboard

Fast Copy

Fast Move

Block Off

Search

Next Search

Description

Undoes the last text editing action executed in this window. For
example, if the last action deleted a line, then the deleted line will be
restored. The number of steps provided by the Undo function is set
in the of the Configure > Editor Options > General tab.

Copies the marked block to the clipboard. The text formatin the
clipboard is standard and the copied block is accessible to other
programs.

Removes the marked block to the clipboard..

Copies the block from the clipboard, starting at the cursor position.

Opens the Clipboard History/Repository dialog.

Copies and appends the marked block of text to the block in the
clipboard.

Cuts the marked block of text and appends it to the block in the
clipboard.

Copies a block to a specified position in the same window.

Moves a block from one position in the window to another position
in this window.

Unmarks a marked text block.

Opens the Search for Text dialog.

Repeats search with the parameters used in the previous search.

© 2015 Phyton, Inc. Microsystems and Development Tools

110 ChipProg Device Programmers

:@ Replace Opens the Replace Text dialog.
"%- Display Multi-file Re-opens the last multi—file search results in the Multi-File Search
. Search Results Results dialog.

Display from line Opens the Display from Line Number dialog for you to specify a line
number-... number. Source text will be displayed from this line.

HE}' Set bookmark... Opens the Set Bookmark dialog to seta local bookmark.

h‘i Retrieve bookmark Opens the Retrieve Bookmark dialog to retrieve a local bookmark.

“‘(2 Condensed mode Toggles the Condensed display mode on and off.

“g Condensed mode Opens the Condensed Mode Setup dialog.

' setup

Line numbers on/off Toggles the availability of the line numbers on and off.

Return to last Activates the most recently edited Source window, and places the
editing context cursor in its final position during the edit.

b

4.5.2.2.1 The Search for Text Dialog

This dialog sets complex criteria and parameters for searching textin files. This dialog and the Replace
Text dialog have a number of common parameters, which function in the same way in both dialogs. To
specify file names, you can use one or several wildcards. Also, the names may contain paths. You can
search in more than one file at once by using parameters of the Multi-Fle Search area.

Element of dialog Description
String to Search for Specifies the text string to search for.
Case Sensitive This boxis unchecked by default. Checking this box specifies that the case of

the string is to be matched.

Whole Words Only This boxis unchecked by default. If checked, the editor will search only for
whole words: the string will be found onlyifitis enclosed between
punctuation or separation characters (spaces, tabulation symbols, commas,
guotation marks, etc.).

Regular Expressions This boxis unchecked by default. Checking of this box specifies that the
search string is a regular expression.

Global Search the entire file for the string. Enabled by default.

Selected Text Search the string in the selected block.

From Cursor Search from the current cursor position.

Entire Scope Search from the beginning or end of the file (depending on the search
direction). Enabled by default.

Perform Multi-Fle If this boxis checked the editor will search in all project files (see the notes

Search below). If the boxis unchecked, then the search will be performed in the

current Source window only.

Search All Source If this boxis checked the editor will search in all the source files included in

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options

Fles in Project
Include Dependency
Fles

Search Wildcard(s)

Search
Subdirectories

Starting Path

Notes

111

the project.

If this boxis checked the editor will search in all the source files included in
the project and all files on which the source files depend, whether explicitly or
implicitly. For C language, these are the header files (*.h).

Check this boxto search for one or several wildcards specifying the files to be
searched. Separate wildcards with semicolons. No quotes are required to
denote Windows-style long names. Example: *. t xt; *. c; c: \ prog\ *. h.
This option and the Search All Source Fles in Project option act
independently of each other: you can search in all files of the project AND in
other files that comply with the specified wildcard(s).

If this boxis checked the editor will search in subdirectories of all the
directories specified by the Search All Source Fles in Project option and by
wildcards.

Begin search from the directory specified in this text box. This directory serves
as the common path and is useful when there are several wildcards such as
the following ones:

c:\prog\text\source*.txt;c:\prog\text\source*.doc

In this case, make use of wildcards (*. t xt ; *. doc) and common path
(c:\ prog\text\source).

1. When you search in the file opened in the Source window, then only the window buffer will be searched,

not the file on disk.

2. Multi-file search is performed in all source files of the project. Upon finishing, the Multi-Fle Search
Results dialog remains open.

4.5.2.2.2 The Replace Text Dialog

This dialog sets the parameters for the search-and-replace operation. This dialog and the Search for Text
dialog have a number of common parameters, which function in the same way in both dialogs. To specify
file names, you can use one or several wildcards. Also, the names may contain paths. You can search in
more than one file at once by using parameters of the Multi-Fle Search area.

Element of dialog

Text to Search for
Replace with

Case Sensitive

Whole Words Only

Regular
Expressions

Prompt at Replace

Description
Specifies the text string to look for (search string).
Specifies the text string to replace the found one.

This boxis unchecked by default. Checking this box specifies that the case of
the string is to be matched.

This boxis unchecked by default. If checked the editor will search only for
whole words: the string will be found onlyifitis enclosed between
punctuation or separation characters (spaces, tabulation symbols, commas,
guotation marks, etc.).

This boxis unchecked by default. Checking of this box specifies that the
search string is a regular expression.

This boxis checked by default and if itis checked the editor will always pop
up the Confirm Replace dialog requiring your permission to replace the
found text. If unchecked the editor will automatically replace the searched-and

© 2015 Phyton, Inc. Microsystems and Development Tools

112

ChipProg Device Programmers

Global
Selected Text
From Cursor

Entire Scope

Perform Multi-Hle
Search and Replace

Search All Source
Fles in Project
Include Dependency

Fles

Search Wildcard(s)

Search
Subdirectories

Starting Path

Notes

1. When you search in the file opened in the Source window, then only the window buffer will be searched,

not the file on disk.

found text.

Search the entire file for the string. Enabled by default.
Search the string in the selected block.

Search from the current cursor position.

Search from the beginning or end of the file (depending on the search
direction). Enabled by default.

This boxis checked by default and if itis checked the editor will search in all
projectfiles (see the notes below). If the boxis unchecked, then the search
will be performed in the current Source window only.

If this boxis checked the editor will search in all the source files included in
the project.

If this boxis checked the editor will search in all the source files included in
the project and all files on which the source files depend, whether explicitly or
implicitly. For C language, these are the header files (*.h).

Check this boxto search for one or several wildcards specifying the files to be
searched. Separate wildcards with semicolons. No quotes are required to
denote Windows-style long names. Example: *. t xt; *. c; c: \ prog\ *. h.
This option and the Search All Source Fles in Project option act
independently of each other: you can search in all files of the project AND in
other files that comply with the specified wildcard(s).

If this boxis checked the editor will search in subdirectories of all the
directories, which are specified by the Search All Source Fles in Project
option and by wildcards.

Begin search from the directory specified in this text box. This directory serves
as the common path and is useful when there are several wildcards such as
the following ones:

c:\prog\text\source*.txt;c:\prog\text\source*.doc

In this case, make use of wildcards (*. t xt ; *. doc) and common path
(c:\ prog\text\source).

2. Multi-file search is performed in all source files of the project. Upon finishing, the Multi-Fle Search
Results dialog remains open.

4.5.2.2.3 The Confirm Replace Dialog

This dialog requires your permission to replace a found string. You can turn the prompt on/off by checking/

clearing the Prompt at Replace boxin the Replace Text dialog.

Button
Yes

No

Function

Replace the found string.

Cancel this replacement. If the procedure is started with the Change All
button for all occurrences in the search area, then the search-and-

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 113

replace process will continue.

Non-Stop From this moment, replace all found strings in this file without prompt.
Cancel Cancel the search-and-replace process.

Skip this Fle Stop search in this file and switch to the next one.

Replace in All Fles Replace all occurrences in all other files without confirmation.

Move cursor to the When this boxis checked the cursor will be automatically placed on the
Yes/No Buttons Yes button on each inquiry for confirmation.

4.5.2.2.4 The Multi-File Search Results Dialog

This dialog displays the multi-file search results. To learn about the multi-file search, see the Search for
Text dialog.

The List of Matched Fles shows the files where the search string is found. The file name is on the left and
its directoryis on the right. The line with green text right under this box displays information about the file
selected in the box. "File in memory" means that the file is opened in the Source window. General
information from FAT means the file is on disk, not loaded. The Preview area shows the source line with
the found text string.

The Sort Fles by area includes a radio button with four file sorting options. When the Consider Directory
boxis checked, the files are sorted with respect to their directories.

The Edit button opens the selected file in the new Source window and places the cursor on the line with
the found string. The found string is marked with the background color. To check if there are other
occurrences of the sought string in this file, press Ctrl+R or use the Next Search command of the Edit
menu.

The Close button closes the dialog but the results are notlost. To reopen the dialog use the Display Multi-
file Search Results button. You can also use the same command of the Edit menu or press Shift+F5. The
files in the List of Matched Fles box, which are opened in the Source window, will be marked with
asterisks on the left.

4.5.2.2.5 Search for Regular Expressions

The text editor supports "regular expressions," which can be used to search for special cases of text
strings. Regular expressions contain the control characters in the search argument string:

? Means any one character in this place. Example: if you specify ?ell as the search string,
then "bell," "tell," "cell," etc. will be found.

% Means the beginning of line. The characters following '%' must begin from column 1.
Example: %Counter - find the word "Counter," which begins at the first column.

$ The end of line. The characters preceding the '$' should be at the last positions of the
line. Example: Counter$ - find the word "Counter” at the line end.

@ Match the next character literally; '@' lets you specify the control characters as usual
letters. Example: @7 - search for the question mark character.

\XNN The hexadecimal value of the character. Example: \xA7 - find the character with the
hexadecimal code of A7.

+ Indefinite number of repetitions of the previous character. For example, if you specify 1T
+2, then the editor will find the lines containing "1" followed by "2", which are separated
with any number of repetitions of the letter T.

[c1l-c2] Match any character in the interval from c1 to c2. Example: [A-Z] means any letter from Ato
Z.

© 2015 Phyton, Inc. Microsystems and Development Tools

114 ChipProg Device Programmers

[~c1l-c2] Match any character whose value is outside the interval from c1 to c2. Example: [-A-Z]
means any character except for the uppercase letters.

textljtext2 The "|" character is the logical "OR" and the editor will look for either text1 or text2.
Example: LPT|COM|CON means search for "LPT" or "COM" or "CON."

4.5.2.2.6 The Set/Retrieve Bookmark Dialogs

Bookmarks help you to return to a marked cursor position in a source file.

You can setand retrieve up to 10 local bookmarks. Everylocal bookmark has an individual numbered
button assigned to it.

To open the Set Bookmark dialog, press Alt+[. To open the Retrieve Bookmark dialog, press Alt+]. To
set/retrieve a bookmark, press its numbered button. The number of the bookmarked line, the bookmark
position in the line (in brackets) and the text of the line are shown at the right of the button.

Local bookmarks are stored in the configuration file and you can work with them in the next session.

4.5.2.2.7 Condensed Mode

In the Condensed mode, onlylines that satisfy a specified criterion are displayed in the window. There are
two available criteria:

¢ the line must contain a given sub-string;

¢ the first non-space character in a line must be at a specified position (column).

Examples: (a) with the sub-string criterion and the sub-string set to "counter,” only the lines containing the
word "counter” will be displayed; (b) with the second criterion and the position setto four, only the lines in
which text begins at column 4 will be displayed.

The Condensed mode brings the lines having some common feature to "one place." If you attentively follow
a rule to begin the declaration of data at position 2, procedures at position 3, and interrupt handlers at
position 4, then the Condensed mode will help you to find a necessary declaration. If you comment certain
lines with the same or similar comments and use the Condensed mode with sub-string, you will be able to
benefit from your composing style. In the Condensed mode, you can move the cursor justas in the normal
mode.

How to control

The criterion for displayis setin the Main menu > Script > Text Edit > Condensed Mode Setup dialog. To
toggle the Condensed mode on/off, use the Edit menu command, the Condensed Mode command of the
local menu or the F12 hotkey. To exit the Condensed mode, press Esc. When you exit, the cursor returns to
the position at which it was before the mode was turned on. To exitthe mode and remain in the line from
which you moved the cursor while in the mode, press Enter or begin editing the line.

4.5.2.2.8 The Condensed Mode Setup Dialog

This dialog sets up the parameters for the Condensed mode of the Source window.

The Display Lines of Text area has radio buttons for switching between two alternative criteria for
condensing text in the Source window: Containing String and Where FHrst Non-blank Column Is:

1. If you check the Containing String radio button the Source window will display only the lines with text that
match the sub-string specified in the text box at the right. Additionally, you can specify that the case should
be matched the case, that whole words only should be used, and that the sub-string is a reqular
expression.

2. If you check the Where Frst Non-blank Column Is radio button, the Source window will display the lines

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 115

where text begins from the position specified in the Column box. Then you should select one of four
options by checking an appropriate radio button:
e FEqual to - the first non-space character should be exactly in the specified column. For example, if you
specify position number 2, the window will display only the lines whose text begins in column 2.
¢ Not Equal to - the first non-space character should be in any column except the position specified here.
For example, if you specify position number 2, the window will not display all the lines beginning in this
column. All other lines will be displayed.
e Less than - displayonlythe lines in which text begins at a position less than the specified one.
e Greater than - displayonly the lines in which text begins at a position greater than the specified one.

When you have completed setup click OK to switch the Source window to the Condensed mode.

4.5.2.2.9 Automatic Word Completion

Itis normal for words (labels, names of variables) to be repeated within a limited part of a file. In such
cases, the Source window helps you finish typing the whole word.

If the cursor is atthe end of line thatis being composed, then upon typing a letter, the editor scans the
text above and below the currentline. If a word beginning with the letters that you have just typed is found
in these lines, then the editor will "complete” this word for you by writing the remaining part of the word
from the current cursor position. If this word suits you, press Alt+Right (Alt+<right arrow>) and the editor
will append the remaining part of the word to the text as if you have typed it yourself. If the word doesn’t
suityou, just continue typing and the editor will accept whatever you type. At any point during the typing,
you may press Alt+Right to accept the editor's completion suggestion.

You can press Alt+Right at anytime and not only when the editor offers you to complete a word. In this
case, the editor will open a list of words that begin with the typed letters. If the list does notinclude an
applicable word, justignore the prompt. The right pane of the Source window, ifitis open, also displays
the word completion list.

How to control

To disable automatic word completion, uncheck the Automatic Word Completion boxin the Main menu
> Configure>Editor Options> General tab. When the boxis checked, a number placed in the Scan
Range box defines the number of lines for the editor to scan. The defaultis 24 lines below and 24 lines
above the currentline. When this parameter is greater than the total number of lines in the file (for
example, 65535), then program composing will become slower because the whole file will be scanned.

4.5.2.2.10 Syntax Highlighting

When the Source window displays the source text, it marks different C language constructions with
different colors. This feature improves readability. The following constructions are highlighted separately:

® Punctuation and special characters: ()[]1{} .,:;and so on.

e Comments that begin with // are highlighted. Comments enclosed in the /* */ character pairs are

highlighted, if the opening and closing pairs are placed in the same line.

e Strings enclosed in double or single quotation marks.

e Keywords of the C language (for, while, and so on).

e Type names ofthe C language (char, float, and so on).

e Libraryfunction names of the C language (printf, strcpy, and so on).

How to control

You can disable syntax highlighting through the Main menu > Configure>Editor Options> General
tab>Syntax Highlighting flag In addition, you can change the color for each construction. To do the latter,
use any of the following items: Main menu > Configure> Environment > Colors tab.

© 2015 Phyton, Inc. Microsystems and Development Tools

116

ChipProg Device Programmers

4.5.2.2.11 The Display from Line Number Dialog

Use this dialog to displaythe source file in the active Source window starting with a specified line. Enter
the line number or select any previous number from the History list. The number of the firstline is 1.

4.5.2.2.12 The Quick Watch Function

The Quick Watch function works as follows: if you roll the mouse pointer over a variable name in the
Source window or the Script Source window, a small box containing the value of the variable will be
opened. This boxdisappears upon moving the mouse off the object.

4.5.2.2.13 Block Operations

Block operations apply an editing action to more than one character atonce. The Source window
supports persistent blocks and performs a full range of operations with standard (stream), vertical
(column) and line blocks of text.

Non-persistent blocks In this mode, once a block is marked, you have to immediately carry out an
operation with it (delete, copy, etc.), because any movement of cursor takes the marking off the block. If a
block is marked, then any entered text will replace the block with the typed text.

Persistent blocks In this mode, the block remains marked until the marking is explicitly removed (hot
key Shift+F3) or the block is deleted (Ctrl+X). The Paste operation for persistent blocks has specifics.
Two additional block operations are available for persistent blocks: fast copy and fast move. These
operations do not use the clipboard and require fewer manipulations of the keyboard.

To enable the persistent block mode check the namesake boxon the Main menu > Configure>Editor
Options> General tab.

Standard blocks The standard (stream) block contains a "text stream" that begins from the initial line
and column of the block and ends at the final line and column.

The Standard blocks is enabled by default.

Line blocks The line block contains whole lines of text. To mark a line block, put the cursor anywhere in
the firstline and press Alt+Z; then put the cursor anywhere in the last line of the block and press Alt+Z
once more (the latter is not necessaryif the block is to be immediately deleted or copied to the clipboard).

Line blocks are always available.

Vertical blocks The vertical block contains a rectangular text fragment. Characters within the block,
which goes beyond the end of the line, are considered to be spaces. Vertical blocks are convenientin
cases like the following example of source text:

char Timer0O far ;
char Timerl far ;
char Int0 far ;
char Intl far ;

Assume the word "far" is to be moved to the place right after the word "char" in each line. The stream
blocks are of little help here. However the task can be easily done with one vertical block. Mark the
persistent vertical block containing the word "far" in each line, place the cursor on the first letter of word
"TimerQ" and press Shift+F2 (fast move the block):

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 117

char TimerO
char Timerl
char Intc0
char Intl

Checking/Clearing the Vertical Blocks boxtoggles between the vertical block and the stream block
modes in the the Main menu > Configure>Editor Options> General tab. The standard blocks are
enabled by default; i.e. the Vertical Blocks boxin the Editor Options dialog is unchecked by default. The
line blocks are always accessible, irrespective of the status of the Vertical Blocks box.

To mark a block, either move the mouse while pressing its left button or use the arrow keys of the
keyboard while pressing the Shift key. To unmark the block, press Shift+F3.

Copying / moving blocks

Amarked block can be copied or moved within the same Source window in two ways: directly (fast
copying, fast moving) and through the clipboard (Copy/Cut-n-Paste). Copying and moving blocks
between the Source windows, or to another application should always be made through the clipboard.

Note. The result of copying the stream or vertical non-persistent block depends on the INSERT mode. If
the mode is enabled, then the block is inserted into the text, starting at the cursor position; otherwise the
copied block overwrites the text on an area of equivalent size.

Fast copying / moving

Fast copying (moving) the blocks in the same window directly (without the clipboard) is convenient
because itrequires pressing of keys only once per operation. Mark a persistent block, then place the
cursor at the destination position and press Shift+F1 to copy, or Shift+F2 to move.

45.3 How to start and debug script files

Starting scripts

Scripts can be started and restarted in several ways. The easiest one uses the commands of the Script
Fles dialog:

* to starta new script enter the file name into Start new script file boxand click the Start button in the
bottom part of the dialog box;

* to restart a stopped script highlight its name in the dialog window that displays all the loaded scripts
and click the Restart button.

Ascriptcan be also started by means of the StartCommandFle() function executed by another running

script.

Debugging scripts
Ascript can be started for an immediate execution (read above) and can be launched in the Debug mode
that usuallyis necessary while you master the script and need to check if it properly works and make
necessary corrections in it. To start the script debugging highlight its name in the Script Fles dialog window
and click the Debug button - the program opens the window with the script file's editable text. The window is
splitin two panes: the left pane displays the script text, the right one is the AutoWatches pane. If you check
the Debug box then everytime when you start a script it will automatically switch to the Debug mode, stop the
script execution and open the window with the script file.

© 2015 Phyton, Inc. Microsystems and Development Tools

118

ChipProg Device Programmers

Scripk: checksum_2.cmd (5,42)

aaaa

1 Save | Step | Fun | | Break |+Watch| Origin |NewPC|Restart|
/4 This example demonstrates how to calculate @ checksum for data
A5 in a buffer.

#include <system.h>-
#include <mprog.hc |

wold maini)

i

A make value for "address space™ from b

Crl+T

Chrl+l
int addr_space = Zublewelid, 0); Run ko cursor F4
loulate check: £ dat t addr Rl S
e we e e oo S
O D R e SR L L T Toggle breakpoint F2, Ctrl+B
SRS B Add ko Watches window Chrl+i
Restart Chrl+E

SetByte(0xz000, addr_space, checksum):
Right pane on

A/ display checksum value
[Line numbers

printf ("Checksum = %02¥", checksum):
I Help on window. ..
CKSUM_2" |d: B, Stopped, PC=000600ZE ["CHECKSUM, Help on ward under cursar

.3

Device: Atmel AT89C51 Fropetiies
- S w1]

o Setup

| [checksum=0

3 addr_space=0

checksun=0
checksum=0, addr_space=0

checksun=0
addr_space=0, checksum=0

—||checksun=0
+|[Checkaun=0=D01187F, checksum=0

hecking cell

Syntax constructions and the lines, which correspond to the current PC value (blue strip) and the
breakpoints (red strips), are highlighted in the script file text (for more information, see Syntax

Highlighting).

Local menu and toolbar

The local menu window contains the following commands, most of which are duplicated by the

corresponding buttons on the window toolbar:

Command Window Toolbar Description
Step Step Executes one operator of the script.
Run Run Starts continuous execution of the scriptin the

window. Then the script execution can be broken
either by hitting a set breakpoint or by the command

Stop.

Run to Cursor Executes the scr

ipt up to the line where the caretis

positioned (the corresponding address).

Alternatively, you

can double-click the line to carry

out this command.

Stop Stops the runnin

g script.

Origin Origin Displays the source text from the line whose
address corresponds to the script file Program
Counter. This operation is not available when

source text lines
addresses.

do not exist for the program

New PC New PC Sets the scriptfile’s Program Counter value to the

address corresp
positioned.

onding to the line where the caretis

© 2015

Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 119

Toggle Breakpoint Break Sets up or clears the breakpoint atthe address
corresponding to the line where the caretis
positioned. When you execute the Run or Run to
cursor command the program execution will be
stopped at the breakpoint.

Add to Watches +Watch Opens the Watches window (if not yet opened) and
Window places the name at the caret position into it.
Restart Restart Restarts the highlighted script.

Note. To get help on a function or variable, point to the function or variable with the cursor and click. For
more information, see How to Debug a Script Fle and Script Fles.

For customizing the ChipProg user interface and debugging purposes scripts themselves can open two
types of additional windows: the User window and the I/O Stream window.

45.3.1 The AutoWatches Pane

The ChipProgUSB program displays a visible portion of the scriptin the Script window. The names of
variables, called AutoWatches, which belong to the visible scriptlines, are listed together with their
currentvalues in the right pane of the window. When you scroll through the Script window the contents of
the AutoWatches pane automatically refreshes.

The AutoWatches can be presented in the pane in the binary, hexadecimal, decimal or ASCIl formats. To
setthe format you need to click the Setup button on the pane local toolbar or right click on the pane space
to open the local menu.

4,5.3.2 The Watches Window

While the AutoWatches pane of the Script window displays values of the script variables visible in the
current window scope you maywantto monitor changing other explicitly specified script variables and
expressions. To do so the ChipProgUSB allows opening the Watches windows. For each variable, the
window displays its name, value, type and address, if any.

Anewlyopened Watches window has one Main tab. You can add custom tabs (with the Display Options
command of the local menu) or rename any existing tabs. The tabs operate independently of each other;
each tab is functionally equivalent to a separate Watches window. However, if needed, you can open
several Watches windows.

Each of the above windows has the +Watch button on its toolbar. Clicking this button opens a dialog for
adding a selected object to the Watches window.
Grids in the Watches window

For better readability the Watches window can be divided in cells by vertical and horizontal grid lines.
Enable the grids to be visible within the Watches window by checking the corresponding boxes in the

© 2015 Phyton, Inc. Microsystems and Development Tools

120 ChipProg Device Programmers

Configure menu > Environment > Fonts tab.

Local menu

The window local menu contains the following commands, most of which are duplicated by corresponding
buttons on the window toolbar.

Command

Add Watch

Delete Watch

Delete All Watches

Modify

Move Watch Up

Move Watch Down

Display Options

Description

Adds one or more objects to the window. Opens the Add Watch dialog to
choose an object byname. Also, you can enter an expression as a hame.

Deletes a selected object from the Watches window.

Deletes all watches from the window.

Opens the Modify dialog to set a new value for a selected variable.
Alternatively, just enter the new value.

Moves a selected watch up the list.

Moves a selected watch down the list.

Opens the Display Options dialog to change the display settings for a
selected object and also to add/delete tabs to/from the window.

4.5.3.2.1 The Display Watches Options Dialog

Use this dialog to set the display options for the selected variable or expression in the Watches window.

Element of dialog

Description

Watch Expression

Display Format

Pop-up Description

Display Bit Layout

Display Bit Descriptions

Auto-size Name Feld

Tabs

Contains a selected expression. The drop—down list contains the
previously used expressions.

Specifies the format for displaying a selected expression (binary,
hexadecimal, decimal or ASCII).

Contains check boxes that let you choose formats for displaying pop-
up SFR descriptions.

If this boxis checked the SFR bits will be displayed in the pop-up layout
descriptions.

Checking this box enables displaying the pop-up descriptions for the
SFR bits, if any.

When this boxis checked and when the vertical grid is visible (see note
below), the window automatically adjusts the Name column width to fit
the longest record in the column.

Lists all the tabs presentin the window.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 121

Add Tab Opens the Add New Tab to Watches Window dialog for entering a
new tab’s name. The window adds this new tab upon pressing OK.

Remove Tab Removes the tab selected in the Tabs list.

Edit Tab Name Opens the Edit Watch Window Tab Name dialog for editing the tab
name.

Global Debug/ Display Opens the Debug Options dialog.

Options

Note. To make grids visible in the Watches window open the Configure menu, the Environment dialog,
the Fonts tab and check corresponding boxes in the Grid field.

4.5.3.2.2 The Add Watch Dialog

Use this dialog boxto add symbol names (for example, a variable name or an expression) to the Watches
window. The dialog contains a list of the symbol names defined in or known to the program.

Element of dialog Description

Name or expression to Enter into this boxthe symbol name or expression to be added. You

watch: can specify several names and expressions either manually
(separated with semicolons) or by selecting in the list with the Ctrl key
pressed.

History The list of previous names and expressions.

45.3.3 The User Window

The User window is a window that can be created by means of the built-in OpenUserWindow function
executed from the scriptitself. The User windows enable:

e drawing graphical objects (indicators, LEDs, buttons, arrows, etc. by means of the built-in graphical
output functions;

e displaying texts in the window;

e responding to the events displaying in the User windows (see WaitWindowEvent).

With this capability, you can organize window operations in the interactive mode. For more information,
see Script Fles.

All functions working with windows (including the User window) obtain the window identifier (handle) as
a parameter. Therefore, you can have several windows of this type opened at the same time.

The User windows do not have a local menu. They only have toolbars with 16 buttons (0...F), and each
button can be programmed to perform a certain function. Pressing a button generates the
WE_TOOLBARBUTTON event.

© 2015 Phyton, Inc. Microsystems and Development Tools

122 ChipProg Device Programmers

4.5.3.4 The I/O Stream Window

The /O Stream window is a window that can be created by means of the built-in OpenUserWindow
function executed from the scriptitself. Script files use windows of this type to display I/O streams in the
form of text. The most usual examples of I/O streams are displaying the characters inputted from the PC
keyboard and text messages outputting by the scripts. Also, you can reassign I/O streams to files and
input data from files.

The functions, which operate with windows (including the I/O Stream window), receive the window
identifier (handle) as a parameter. Therefore, several windows of this type can be open atthe same time.

When the text display function sends text to this window, the window displays the text from the current
cursor position. To begin the nextline, this function outputs \n' (the line feed character).

The window features two text display modes: with the automatic line advance (Wrap) and without it. In the
automatic line feed mode, everytext line that does not fitin the window is wrapped to the next line. In the
other mode, if the line does not fit in the window, its end will lie beyond the window border and will be
invisible. The Wrap button in the toolbar toggles the window between these modes. The Clear button
clears the window contents.

Windows of this type do not have a local menu.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 123

4.6

46.1

Programming Automation via DLL

Any ChipProg programmer can be controlled not only from the ChipProgUSB user interface but also from
an external computerized environment, which is appropriate for programming automation. This chapter
describes how to integrate a ChipProg programmer into an external environment by means of Phyton's
proprietary Application Control Interface (hereafter ACI). Remember that use of the Application
Control Interface requires the ChipProg to be driven from a PC under Windows XP, 7 or 8.

Application Control Interface

What is the Application Control Interface?

The ACI is a set of proprietary Phyton software elements that allows integration of the ChipProg
programmers into an external computerized environment, for example Automated Test Equipment (ATE).
The ChipProgUSB software includes three Application Control Interface components:

1) The ACI.DLL file that specifies a set of ACI functions, which can be invoked from external
applications to perform programming operations. This DLL conforms completely to Microsoft's
dynamically-linked shared library concept.

2) The aciprog.h header file written in the C/C++ language that lists all the ACI functions exported
to the ACI.DLL.DLL and the structures associated with these functions.

3) A few program examples that control ChipProg programmers from external applications
Requirements

1) The ChipProgUSB software must be installed on the computer that controls the ChipProg
operations (hereafter the instrumental or host computer). The latest ChipProgUSB software version is

available for free download from the http://www.phyton.com/htdocs/support/update.shtml webpage.

2) The ACI.DLL.DLL requires the Windows XP, Windows 7, or Windows 8 operating system.

3) It is necessary to position the windows.h file before the aciprog.h file in the application
program.

32- and 64-bit Microsoft Windows OS - specific of use

There is the difference in Application Control Interface use under control of the 32- and 64-bit Windows.
32-bit applications should use the ACI.DLL dil and the ACI.lib export library; 64-bit - ACI64.DLL and
ACI64.lib respectfully. 32-bit applications can be used for working with Application Control Interface
under control of either Windows versions: 32- and 64-bit.

How does the Application Control Interface works?

The ACI.DLL launches the programmer’s executable file by means of the ACI_Launch() function and
then controls the ChipProgUSB software by calling other ACI functions. The ChipProgUSB executable,
universal for all Phyton USB-hosted programmers, is UProgNT2.exe.

Each ACI function, being called by an external application, sends back to this application a unique
function return code. The return code constants - ACI_ERR_xxx - are defined into the aciprog.h file
included in the ACI software set.

© 2015 Phyton, Inc. Microsystems and Development Tools

http://www.phyton.com/htdocs/support/update.shtml

124

ChipProg Device Programmers

The ACI.DLL launches the programmer executable file by means of the ACI_Launch() function and then
controls the ChipProgUSB software by calling other ACI functions. The ChipProg executable, universal
for all USB-hosted programmers, is the UProgNT2.exe.

Each ACI function, being called by an external application, sends back to this application a function
return code. The return code constants - ACI_ERR_xxx - are defined into the aciprog.h file included into
the ACI software set.

An external application can call either an ACI function without any parameter (just by the function name)
or by the function name with an added pointer to the parameter structure. The very first member of any
structure is always the 'UINT size' parameter that defines the structure size. This insures compatibility of
different ACI.DLL versions. The only exception is the ACI_IDECommand() function. Here we sacrificed
uniformity of the structure format in behalf of simplicity of the pseudo-function declaration.

Names of all the ACI objects (functions and structures) always begin with the prefix ACl. Names of the
structure patterns complete with the suffix _Params.

Numbers of the memory buffers and layers in memory buffers begin from zero. All addresses have a 64-
bit format and consist of two 32-bit halves (low and high), in order to be compiler-independent. For
example, if the compiler recognizes the uint64 type of data, then the function call for the function that
assigns a 64-bit memory buffer address in the structure ACI_Memory_Params, can be presented as:

ACl _Menory_Parans par ans;
*((uint64 *)parans. AddressLow) = 0x123456789ABC,

Note! All addresses in the structures are shown in the format specified by the device manufacturer, i.e.
in Bytes, Words, etc. For example, for any 16-bit microcontroller the address format is always a Word,
not a Byte.

In most cases, in a process in which the programming is under control of an external application, it is
not necessary to make \isible the ChipProgUSB graphical user interface (GUI). The ACI allows you to
hide the ChipProgUSB GUI. Howeer, it may be necessary to unhide the programmer GUI, or just some
windows and dialogs, for setting up the programming environment and for debugging purposes (for
example, for selecting the target device, loading the file, etc.). When the programming environment is set
up, the ChipProgUSB user interface can be hidden to free more display space for the controlling
application.

How to control multiple device programmers by means of the Application Control Interface?

It is possible to remotely launch an unlimited number of ChipProg programmers and to drive each of
them individually via ACI. After launching a programmer, the ACI creates in the ACI.DLL a special unique
object - "a connection". A particular connection is defined by the ConnectionlD parameter that defines
a particular device programmer running under ACI control. The ACI_SetConnection function allows for
selection of a particular device programmer among others. Then, after the programmer is selected, all
the ACI functions will serve only one of these connections; i.e. they all will affect one selected device
programmer. If only one programmer is under control, the connection will be set automatically.

It is important to remember that more than one ChipProgUSB can be launched in either the Single-
programming or the Multi-programming or Gang-programming mode. If, for example, a cluster of
six ChipProg programmers was launched in the gang mode, then a whole cluster driven by the ACI will
represent a single connection, not six connections. So, in terms of the ACI, this cluster will have one
ConnectionlID.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 125

for example Automated Test Equipment (ATE)

4.6.2 ACIFunctions

In order to set up and control a ChipProg tool, the program running on the instrumental computer calls
the Application Control Interface functions listed in the matrix below. Most of these functions are grouped
in "bidirectional couples" (In-Out or Get-Set). Calling some Application Control Interface functions
requires structures that specify memory locations, pointers and other objects affiliated with the called
function, while other functions do not require any structures. Here is the list of the ChipProg Application
Control Interface functions:

© 2015 Phyton, Inc. Microsystems and Development Tools

126

ChipProg Device Programmers

Application Control
Interface function name

Brief description

Associated
windows
and dialogs

Associated Application
Control Interface
structures

1. ACI

functions that start and stop programming sessions

Starts the ChipProgUSB program. This
function must alw ays be the very first in the

ACI Launch : - NA ACI Launch Params
I chain of other Application Control Interface

functions that form the programming session.

Closes the ChipProgUSB program. This

function must alw ays be the last one in the
ACI Exit chain of other Application Control Interface NA NA

functions. It completes the external control
session.

2. ACI functions that configure the programmer or get its current configuration

Loads the programmer configuration
parameters from the host computer to the

ACI_LoadConfigFile NA ACI Config_Params
programmer.
Saves the programmer's current
ACl SaveConfiaFile configuration parameters to the host NA ACI Confia Params
ACl SaveContigFile Aatl_tonfig_Farams
computer.
3. ACI functions that get the target device properties or set them

Gets the manufacturer's name (brand) and
the part number of the device currently being

AC| GetDevice programmed from the programmer to the host | Select Device | ACI_Device Params
computer.
Sets the manufacturer's name and the part

ACI SetDevice number of the device to be programmed in Select Device | ACI Device Params

the programmer.

4. ACI functions that get current parameters of the buffers and layers or configure them

ACI GetLayer

Gets the parameters of a specified memory
buffer and layer fromthe programmer to the
host computer.

Buffer Dump

ACI Layer Params

ACI| CreateBuffer

Creates a memory buffer w ith specified
parameters in the programmer.

Buffer Dump

ACI| Buffer_Params

ACI| _ReallocBuffer

Changes a size of the layer #0 in a specified
memory buffer in the programmer.

Buffer Dump

AC| Buffer_Params

5. ACI functions that read the content of the buf

fer layer or

write into it

ACI_ReadlLayer

Reads data from a specified memory buffer
in the programmer to the host computer.

Buffer Dump

ACI_Memory_Params

ACI WriteLayer

Writes data into a specified memory buffer of

Buffer Dump

ACI Memory Params

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options

127

Application Control
Interface function name

Brief description

Associated
windows
and dialogs

Associated Application
Control Interface
structures

the host computer to the programmer
memory buffer.

ACI_FillLayer

Fills a w hole selected layer of a specified
memory buffer with a specified data pattern.

Buffer Dump

ACl Memory Params

6. ACI functions that

the programmer

get programming parameters from the programmer or set themin

. Program
! Gets current programming parameters from !
ACI GetProgrammingParams preg ap Manager > | ACI Programming Params
the programmer to the host computer. A
Options
" Program
ACI SetProgrammingParams Sets programming parameters from the host Manager > | ACI Programming Params
computer to the programmer. :
Options

7. ACI functions that

get device-specific programming options from
set them in the programmer

the programmer or

Gets current programming options fromthe Device and

ACI GetProgOption programmer to the host computer. Algorithm | ACI ProgOption Params
Parameters
Sets programming options from the host Device and

ACI_SetProgOption computer to the programmer. Algorithm | ACI_ProgOption_Params
Parameters
.) Device and

) Sets default programming options and - .
ACI _AllProgOptionsDefault programming algorithms in the programmer. P%S ACI ProgOption Params

8. ACI functions that control programm

Ing operations

Initiates a specified programming operation,
keeping under control its successful

. . . . Program .
ACI_ExecFunction completion or failure. It controls a single Manager ACI_Function_Params
programmer.
Initiates a specified programming operation
ACl StartFunction and then does' not check the operation result. Program ACI Function Params
It controls a single programmer. Manager
Used to control multiple device
ACI GangStart programmers.'lnltlates aut.o programming in Program ACl GangStart Params
oL vahgoant the gang (multi-programming) mode. Manager
ACI GetStatus Qets a c_urrent programmer status Program ACI PStatus_Params
- information. Manager
ACI TerminateFunction Terminates a current programming operation. Program NA
Manager
ACI GangTerminateFunction | Terminates a current programming operation Program ACI GangTerminate Para

© 2015 Phyton, Inc. Microsystems and Development Tools

128 ChipProg Device Programmers
Application Control Brief description Associated | Associated Application
Interface function name windows Control Interface
and dialogs structures
on a specified site of the gang programmer. Manager ms
9. ACI functions that save files from the programmer and load files to the programmer
Saves a specified file from a specified
ACI|_FileSave buffer's layer of the programmer into the Buffer Dump | ACI_File_Params
instrumental computer.
Loads a specified file from the instrumental
ACI_FileLoad computer to a specified buffer's layer in the | Buffer Dump | ACl File_Params
programmer.
10. ACI functions that display programmer's windows and dialogs for setting up and
debugging external programming sessions
ACI_SettingsDialog Displays the programmer Preferences dialog. Configure > NA
Preferences
ACI SelectDeviceDialog Displays the Select Device dialog. Select Device | NA
ACI BuffersDialog Displays the memory buffers setting dialog. Buffer Dump | NA
ACI LoadFileDialog Displays the file loading dialog. Buffer Dump | NA
ACI_SaveFileDialog Displays the file saving dialog. Buffer Dump | NA
4.6.2.1 ACI_Launch
ACI_FUNC ACI_Launch(ACI_Launch_Params * params);
Description
This function launches the ChipProgUSB software. Optionally this ACI function can launch the
programmer with a specified command line key and load the file that will configure the ChipProg
hardware.
Note! This ACI function must always be called before any other ACI function !
4.6.2.2 ACI_Exit

ACI_FUNC ACI_Exit();

Description

Call of this function stops the ChipProgUSB software. In most cases the programmer practically
immediately stops running. Sometimes, after calling the ACI_EXxit function, it continues working for a

while to correctly complete an earlier launched process. After all, the ChipProg will stop and quit itself
after finding that the controlling process has ended.

It is possible, however, that the ChipProgUSB software will keep running even after the control process

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 129

has completely stopped. This is an abnormal situation and, as a result, it will be impossible to re-
establish communication with the programmer hardware by launching the ACI_Launch function. In this
case you should manually close the ChipProgUSB program via the Windows Task Manager.

4.6.2.3 ACI_LoadConfigFile

ACI_FUNC ACI_LoadConfigFile(ACI_Config_Params * params);

Description

This function loads the ChipProg configuration parameters that include all the settings available via the
ChipProgUSB dialogs (memory buffer configurations, programming options, test of the device insertion,
etc.).

The ChipProgUSB program automatically saves some programming options and settings, including the
type of selected device, the device parameters, the start and end addresses of the device being

programmed, the buffer start address, and a set of the Auto Programming commands. Then it
automatically restores these parameters when the user changes the device type.

See also: ACI_SetProgrammingParams, ACl SetProgOption, ACI_GetProgrammingParams,
ACI_GetProgOption, ACI_SaveConfigFile

4.6.2.4 ACI_SaveConfigFile

ACI_FUNC ACI_SaveConfigFile (ACI_Config_Params * params);

Description

This function saves the ChipProg options specified in the tab Option of the Program Manager window
(memory buffer configurations, programming options, test of the device insertion, etc.).

The ChipProgUSB program automatically saves some programming options and settings including a
type of the selected device, the device parameters, the start and end addresses of the device being

programmed, the buffer start address, and a set of the Auto Programming commands and then
automatically restores these parameters when the user changes the device type.

Ci . Tavwe: ACL_SetProgrammingParams, ACI_SetProgOption, ACI GetProgrammingParams,
ACI_GetProgOption, ACI_LoadConfigFile

4.6.2.5 ACI_SetDevice

ACI_FUNC ACI_SetDevice(ACl _Device Params * params);

© 2015 Phyton, Inc. Microsystems and Development Tools

130

ChipProg Device Programmers

4.6.2.6

4.6.2.7

4.6.2.8

4.6.2.9

Description
This function chooses the device to be programmed. Along with the device type, the function
automatically loads the device parameters, start and end addresses and the buffer start address. Also, it

restores the Auto Programming command list if the selected device type has ever been selected
earlier, but the parameters listed above were changed during the programming session.

ACl_GetDevice

ACI_FUNC ACI_GetDevice(ACl _Device_Params * params);
Description

This function gets the device's part number (name) and the name of the manufacturer of the device being
programmed now (for example: AT89C51, Atmel; 28F128J3C, Numonyx, etc.).

ACI_GetLayer

ACI_FUNC ACI_GetLayer(ACIL _Layer Params * params);
Description
This function gets the parameters of a specified memory buffer and buffer's layer.

See also the ACI_Layer_Params structure description.

ACIl_CreateBuffer

ACI_FUNC ACI_CreateBuffer(ACl_Buffer Params * params);
Description
This function creates a buffer with the parameters specified by the ACI_Buffer_Params structure. The

ChipProgUSB program automatically assigns the buffer #0 so it is not necessary to create this buffer by
a separate command.

See also the ACI_Buffer Params structure description.

ACI_ReallocBuffer

ACI_FUNC ACI_ReallocBuffer(ACIl_Buffer_Params * params);

Description

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 131

4.6.2.10

4.6.2.11

4.6.2.12

This function changes the size of the layer #0 in the memory buffer specified in the ACI_Buffer Params
structure.

See also the ACI_Buffer Params structure description.

ACIl_ReadlLayer

ACI_FUNC ACI_ReadLayer(ACl_Memory Params * params);
Description

This function reads data from a specified memory buffer. The data size is limited by 16M Bytes.

Note! This function reads the data from the programmer's memory buffer but does not physically
read out the content of the selected target device. In order to physically read out the device
memory content, execute the programmer command (function) Read by means of the

ACI ExecFunction or ACI StartFunction with appropriate attributes.

ACIl_WriteLayer

ACI_FUNC ACI_WriteLayer(ACl_Memory_ Params * params);
Description

This function writes data to a specified memory buffer. The data size is limited by 16M Bytes.

Note! This function writes the data to the programmer's memory buffer but does not physically
program the device. In order to physically write data from the buffer to the device's memory, execute
the programmer command (function) Program by means of the ACI_ExecFunction or
ACI_StartFunction with appropriate attributes.

ACI_FillLayer

ACI_FUNC ACI_HllLayer(ACIl_Memory_Params * params);
Description

This function fills a whole active layer of a specified memory buffer with a specified data pattern. This
function works much faster than the ACI_WritelLayer function which writes data to the buffer layer.

Note! This function fills the programmer's memory buffer with a specified data pattern but does not
physically write them to the device being programmed. In order to physically write data from the
buffer to the device execute the programmer command (function) Program by means of the
ACI_ExecFunction or ACI_StartFunction with appropriate attributes.

© 2015 Phyton, Inc. Microsystems and Development Tools

132

ChipProg Device Programmers

4.6.2.13

4.6.2.14

4.6.2.15

ACl_GetProgrammingParams

ACI_FUNC ACI_GetProgrammingParams(ACI_Programming_Params * params);

Description

This function gets current programming parameters specified in the tab Option of the Program Manager
window (memory buffer configurations, programming options, test of the device insertion, etc.).

See the ACI_Programming Params structure description.
ACIl_SetProgrammingParams

ACI_FUNC ACI_SetProgrammingParams(ACIl_Programming_Params * params);

Description

This function sets programming parameters specified in the tab Option of the Program Manager window
(memory buffer configurations, programming options, test of the device insertion, etc.).

See also the ACI_Programming Params structure description.
ACIl_GetProgOption

ACI_FUNC ACI_GetProgOption(ACIl_ProgOption_Params * params);

Description

This function gets current settings from the Device and Algorithm Parameters Editor window. As an
example see this window for one of the microcontrollers below.

Edit | Min. Value | Max Value| Default | All Default |

| Mame Walue | Description

Device Parameters
UCFGT & UCFG2 Uzer Configuration REG . #1 & REG. 82
SECx s | Sector sscurity bi

Boot Status Byte 0 | Walue for Bont gtat.as'Byte

Sectars to Eraze | Launch ‘Eraze’ function to eraze these sectors
Algorithn Parameters

Voo 3.30% | Power supply voltage

| Socket Scheme fNotes

Device: "NXP/Philips PBILPCI38

Note! This function does not physically read the specified information from the device being
programmed. It reads from some \virtual memory locations in the host PC's RAM, associated with
physical locations in the target device's memory and registers. If the option that you would like to
check is a property of the device's memory or registers, then first you have to execute the programmer

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 133

command (function) Read in the command group Device Parameters by means of the
ACI_ExecFunction or ACI_StartFunction with appropriate attributes. Then you can read the execute
the ACI_GetProgOption function.

See also the ACI ProgOption Params structure description.

4.6.2.16 ACI_SetProgOption

ACI_FUNC ACI_SetProgOption(ACIl_ProgOption_Params * params);
Description

This function sets device-specific options and parameters, which are specified in the Device and
Algorithm Parameters Editor window. As an example see this window for one of the microcontrollers
below.

Edit | Min. value [Max Value| Defautt | All Defautt |

| Mame Walue | Description

Device Parameters
CFGT & UCFG2 Uzer Configuration REG.#1 & REG.HZ
SECx 1. | Sector security bi

-Bhnn-t-E;t.atLis Byte 0 [Uaii,i;‘far Boot Statﬁs.Byte

Sectors to Eraze | Launch ‘Eraze’ function to erage these sectors
Algorithm Parameters

Voo 3.30% | Power supply vaoltage

| Socket Scheme iNotes

Device: NXP/Philips PBILPCI38

Note! This function does not physically write the specified information into the device being
programmed. It actually writes to some virtual memory locations in the host PC's RAM, associated
with physical locations in the target device's memory and registers. In order to complete programming
the device parameters and to physically program them into the device's memory you should execute
an appropriate Program command (function) in the command group Device Parameters, by means
of the ACI_ExecFunction or ACI_StartFunction with appropriate attributes.

See also the ACI_ProgOption Params structure description.

© 2015 Phyton, Inc. Microsystems and Development Tools

134

ChipProg Device Programmers

4.6.2.17

4.6.2.18

4.6.2.19

ACI_AlIProgOptionsDefault

ACI_FUNC ACIL_AlIProgOptionsDefault();

Description

This function sets default device-specific options and parameters specified in the Device and
Algorithm Parameters Editor window. These default parameter sets vary. They are defined by the
device manufacturers in the device data sheets.

Note! This function does not physically restore the default settings into the device being
programmed. It actually writes to some virtual memory locations in the host PC's RAM, associated
with physical locations in the target device's memory and registers. In order to complete programming
the device parameters and to physically fix them in the device's memory you should execute an
appropriate Program command (function) in the Device Parameters command group by means of
the ACI_ExecFunction or ACI_StartFunction with appropriate attributes.

ACIl_ExecFunction

ACI_FUNC ACI_ExecFunction(ACIl_Function_Params * params);

Description

This function launches one of the programming operation (Read, Erase, Verify, etc.) specified by the
ACI_Function_Params. During execution the ACI_ExecFunction does not allow calling any other ACI
function until the programming operation, initiated by the ACI_ExecFunction function, completes the
job. The ACI_ExecFunction from the ACI_StartFunction that returns control immediately after it was
called.

ACI_StartFunction

ACI_FUNC ACI_StartFunction(ACIl_Function_Params * params);

Description

This function launches one of the programming operation (Read, Erase, Verify, etc.) specified by the
ACI_Function_Params and immediately returns control to the external application no matter whether the
programming operation, initiated by the ACI_StartFunction, has or has not completed. The
ACI_StartFunction is different from the ACI_ExecFunction. It is possible to check if the operation has
completed by the ACI_GetStatus function call. This allows monitoring the execution of programming
operations if they last for a long time.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 135

4.6.2.20 ACI_GangStart

ACI_FUNC ACI_GangStart(ACl_GangStart_Params * params);

Description

This function is used to control multiple device programmers only when the ChipProgUSB program was
launched from the command line with the /gang key to drive a ChipProg gang programmer or a cluster of
multiple programmers connected to one PC! See also the ACI_Launch function. For controlling a single
ChipProg device programmer use ACI_StartFunction or ACI_ExecFunction.

The ACI_GangStart function launches Auto Programming on multiple ChipProg device programmers for
the programming socket specified in the SiteNumber parameter of the ACl PStatus_Params structure.

The function returns control immediately. In order to detect the ending time of the ACI_GangStart
execution, use the ACI_GetStatus function.

4.6.2.21 ACI_GetStatus

ACI_FUNC ACI_GetStatus(ACI_PStatus_Params * params);

Description

This function gets the programmer status that includes:
1) The status of the programming operation initiated by the ACI_StartFunction call (whether it has
completed or it is still in progress);

2) The device insertion status (certainly if this option is enabled in the tab Option of the Program
Manager window).

4.6.2.22 ACI_TerminateFunction

ACI_FUNC ACIL_TerminateFunction();

Description

This function terminates a current programming operation initiated by the ACI_StartFunction call.

4.6.2.23 ACI_GangTerminateFunction
ACI_FUNC ACI_GangTerminateFunction(ACl_GangTerminate Params * params);

Description

This function, similar to the ACI_TerminateFunction which is applicable for stopping a single device
programmer, is intended for terminating a current programming operation on one programming site
belonging to the multiprogramming cluster or a gang programmer. The programming site (or socket)

© 2015 Phyton, Inc. Microsystems and Development Tools

136

ChipProg Device Programmers

4.6.2.24

4.6.2.25

4.6.2.26

4.6.2.27

number is specified by the SiteNumber parameter from the ACI_GangTerminate_Params structure.
This function can be used only for the ChipProg programmers launched in the gang mode (see the /
gang parameter among other command line keys for the ACI_Launch function). In order to terminate an
operation for a running single-site ChipProg programmer use the ACI_TerminateFunction.

When the ACI_GangTerminateFunction initiates stopping a current operation it returns the control either
when the operation was successfully stopped or with a delay defined by the Timeout parameter.

ACI_FileLoad

ACI_FUNC ACI_FileLoad(ACIl_File_Params * params);
Description

This function loads a specified file into a specified buffer's layer. The control program running on the host
PC should not worry about the file's format settings - the ChipProgUSB software takes care of this.

ACIl_FileSave

ACI_FUNC ACI_FleSave(ACI_File_Params * params);

Description

This function saves a specified file from a specified buffer's layer. The ChipProgUSB software enables
saving files in all popular formats: HEX, Binary, etc..

ACI_SettingsDialog

ACI_SettingsDialog();

Description
This macro opens the Configure > Preferences setting dialog. The dialog will be \isible irrespective of
the ChipProgUSB main window status; the main window can remain closed but the Configure >

Preferences setting dialog will appear on the computer screen, thus allowing manipulations in the
dialog.

ACIl_SelectDeviceDialog

ACI_SelectDeviceDialog();

Description

This macro sends a command that opens the Select Device dialog. The dialog will appear on the
screen irrespective of the ChipProgUSB main window status; the main window can remain closed but
the Select Device dialog will appear on the computer screen.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 137

4.6.2.28 ACI_BuffersDialog

ACI_BuffersDialog();

Description

This macro opens the Memory Dump Window Setup dialog. The dialog will be visible irrespective of
the ChipProgUSB main window status; the main window can remain closed but the Memory Dump
Window Setup dialog will appear on the computer screen to allow the buffer setup. See the dialog
example below.

|[.‘~'§;i sl Uiy i S5y *)
Buffer Optionz

ASCI pane
Dizplay buffer checksum

[Limit durnp to layer size

[] Signed decimal and hex values
[] &hways display '+ or -
[] Leading zeroes for decimal numbers

Dizplay D ata A

(&) Bytes] Reverse bytes in words [MSE first]
) whords [16 bits)] Reverse words in dwards

O Double Wards (32 bits)] Reverse dwords in quards

(O Quad Words (54 bits] _
MHonprintable A5CH characters

[1Replace characters 0x00...0x20

Dizplay Format

O Bi Replace characters 0=80.. OxFF
inary

(¥ Hexadecimal Replace with: O [dat)

() Decimal () Space

4.6.2.29 ACI_LoadFileDialog

ACI_LoadFleDialog();
Description
This macro opens the Load File dialog. The dialog will be visible irrespective of the ChipProgUSB main

window status; the main window can remain closed but the Load File dialog will appear on the
computer screen. See the dialog example below.

© 2015 Phyton, Inc. Microsystems and Development Tools

138

ChipProg Device Programmers

S Luadl Fila

File Mame:

File: Earmat;

() Standard/E stended Intel HEX, [hex]
() Binary image [*.bin)

() Motorala S-record [hex:® 2% mot]
() POF [paf)

(JEDEC [Fjed)

(OPRG [*pra]

(" Haltek OTP [*.atp]

() dngstrem S8V [*.sav)

(IASCI Hes [=.tut)

(AL Dctal [=.tet)

Start address far binary image: |

Offset for loading addiesses: [

4.6.2.30 ACI_SaveFileDialog

ACI_SaveFileDialog();

Description

V]

Buffer ta load file to:

(%) Buffer #0

Layer ta load file to:

(%) Code (128 KB), bytes

This macro sends a command that opens the Save File dialog. The dialog will be \isible irrespective of
the ChipProgUSB main window status; the main window can remain closed but the Save File dialog will
appear on the computer screen. See the dialog example below.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 139

4.6.2.31

4.6.2.32

| e i i %]
File narme
hehinfoph_productshrom-n-fipm38-a.hex _|
Addreszes File: format
Start: | 0H [+ {#)5tandard/E stended Intel HEM
End: [1FFFH 7 -.--,) Binary image
== () Motorola §
{JPOF
All
{2 JEDEC
() PRG
I ASCIH Hes
() ASCI Octal
Buffer to zawe file fram: Layer to zawve file from:
(#) Buffer #0 {(¥) Code (128 KB), bytes

ACI_SetConnection

ACI_FUNC ACI_SetConnection(ACIl_Connection_Params * params);

Description

This function identifies a current device programmer connection. Use this function when you control a
number of device programmers by means of multiple calls of the ACI Launch function. Each connection

gets its own unique identifier. Executing of the ACI_Launch function returns the Connectionld as part of
the ACI_Launch_Params structure.

After establishing the connection, all the ACI functions following the ACI_SetConnection function will
work exclusively with the established connection.

When ACI controls only one ChipProg programmer it is not necessary to execute the
ACI_SetConnection function; the ACI_Launch function automatically assigns a Connectionld that is the
next one in order.

The Connectionld can be always checked by executing the function ACI_GetConnection.

ACIl_GetConnection

ACI_FUNC ACI_GetConnection(ACIl_Connection_Params * params);
Description

This function allows getting the identifier of a current device programmer connection. If a number of
single ChipProg programmers were launched, one after another, by multiple executions of the

© 2015 Phyton, Inc. Microsystems and Development Tools

140

ChipProg Device Programmers

4.6.3

ACI_Launch function, then executing the ACI_GetConnection function returns a current Connectionld

parameter as a part of theACI|_Launch Params structure.

See also ACI_SetConnection.
ACI Structures

This chapter describes the structures used by the ACI functions.

Structure The ACI function that uses the structure
ACl_Launch Params ACI Launch

ACI Config Params ACI LoadConfigFile, ACI SaveConfigFile
ACI_Device Params ACI_GetDevice, ACI_SetDevice,

ACIl Layer Params ACI| GetLayer

ACI|_Buffer Params ACI_CreateBuffer, ACI_ReallocBuffer

ACI _Memory Params ACI ReadlLayer, ACI WriteLayer, ACI FillLayer

ACI_SetProgrammingParams,

ACI_Programming_Params .
AC|_Programming_Params ACI_GetProgrammingParams

ACI _ProgOption Params ACI _GetProgOption, ACI_SetProgOption
ACI_Function_Params ACI_ExecFunction, ACI_StartFunction
ACIl PStatus Params ACI GetStatus

ACI_File Params ACI_FileLoad, ACI_FileSave

ACl GangStart Params ACl GangStart, ACI GetStatus
ACI_GangTerminate Params ACI_GangTerminateFunction

Here is an example of the structure syntax:

typedef struct tagAC _Buffer_Parans

{
U NT Size; /1 (in) Size of structure, in bytes
DWORD Layer 0Si zeLow, /1 (in || out) Low 32 bits of layer 0 size, in bytes
DWORD Layer 0Si zeHi gh; /1 (in || out) Hgh 32 bits of |ayer 0 size, in bytes

I Layer size is rounded up to a nearest val ue
supported by progranmrer.
LPCSTR Buf f er Narrg; /1 (in) Buffer nane
U NT Buf ferNunber; /1 For ACI _CreateBuffer(): out: Created buffer nunber
/1 For ACI _ReallocBuffer(): in: Buffer nunmber to realloc
U NT NunBuffers; /1 (out) Total nunmber of currently allocated buffers
U NT NunlLayers; /1 (out) Total nunber of layers in a buffer

} AC _Buffer_Parars;

Each structure includes a number of parameters (here Size, LayerOSizeLow, NumBuffers, etc.). The
parameter's name follows its format (UINT, DWORD, LPCSTR, CHAR, BOOL, etc.). The comment on
the parameter begins from a bracketed symbol showing the sending direction of this parameter:

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 141

e (in) - the parameter is sent from the instrumental computer to the programmer;

¢ (out) - the parameter is sent from the programmer to the instrumental computer;

e (in || out) -the parameter can be sent in either direction, depending on the ACI function
context.

4.6.3.1 ACI_Launch_Params

typedef struct tagAC _Launch_Parans

{
U NT Size; /1 (in) Size of structure, in bytes
LPCSTR Pr ogr amrer Exe; /1 (in) Programer executable file nane
LPCSTR CommandLi ne; /1 (in) Optional progranmer command-|ine paraneters
BOOL DebugMode; /1 (in) Debug node. Programmer w ndow i s not hidden

} ACl _Launch_Par arrs;

This is the name of the programmer executable file. If the parameter does not
include a full path then the program will search for the UprogNT2.EXE file into
the folder where the ACI.DLL resides.

Programmer Exe The target folder name, where the the UprogNT2.EXE file resides, is defined
by the parameter "Folder" of the ""HKLM\SOFTWARE\Phyton\Phyton
ChipProgUSB Programmern\x.yy.zz" key. It is supposed that multiple
ChipProgUSB wversions can be installed on the host computer.

This structure member specifies the command line options. One of the option
is NULL (no keys). If the host computer drives a cluster of multiple
programmers then the only way to launch a certain programmer is to specify
the /N<serial number> for the CommandLine structure member.

CommandLi ne

This key controls the ChipProgUSB main window \visibility. Setting TRUE for
this structure member makes the ChipProgUSB main window visible. Then

DebughMode you can manipulate with the programmer using its user interface - open
windows, set any programmer resources, execute programming operations,
etc..

See also: ACI_Launch

4.6.3.2 ACI_Config_Params

typedef struct tagAC _Confi g_Parans
{

U NT Size; /1 (in) Size of structure, in bytes

LPCSTR Fi | eNarre; /1 (in) Options file name to | oad/ save configuration
} AC _Config_Parars;

Fi | eNane This is the name of the file that configures the
programmer.

See also: ACI_LoadConfigFile, ACI_SaveConfigFile

© 2015 Phyton, Inc. Microsystems and Development Tools

142 ChipProg Device Programmers
4.6.3.3 ACI_Device_Params
typedef struct tagAC _Devi ce_Parans
{
UNT Size; /1 (in)
CHAR Manufacturer[64]; // (in |
CHAR Nane[64] ; /11 (in ||
} ACl _Devi ce_Par ans;
Manuf act ur er
Name
See also: ACI SetDevice, ACI GetDevice
4.6.3.4 ACI_Layer_Params

Si ze of structure,
out) Device Manufacturer
out) Device Nane

in bytes

The manufacturer of the device being programmed

The device part number as it is displayed in the
programmer's device list

typedef struct tagAC _Layer_ Parans
{

U NT Size; I

U NT BufferNunber; I
buffer nunber is 0

U NT Layer Nunber; I
nunber is 0O

DWORD Layer Si zeLow, I

DWORD Layer Si zeH gh; I

DWORD Devi ceSt art Addr Low;, I
| ayer

DWORD Devi ceSt art Addr Hi gh; I
this layer

DWORD Devi ceEndAddr Low; I
| ayer

DWORD Devi ceEndAddr Hi gh; I
| ayer

DWORD Devi ceBuf St art Addr Low;, //
in buffer for this |ayer

DWORD Devi ceBuf Start Addr Hi gh; //
in buffer for this |ayer

UNT UnitSize; I

BOCL Fi xedSi ze; I
ACl _Real | ocBuffer()

CHAR Buffer Nane[64]; I

CHAR Layer Nane[64] ; I

U NT NunBuffers; I

U NT NunlLayers; I

} ACl _Layer _Par ars;

(in)
(in)

Si ze of structure, in bytes
Nunber of buffer of interest, the first

Nunber of the first

(in) | ayer of interest, | ayer
(out)
(out)

(out)

Low 32 bits of |ayer size, in bytes
H gh 32 bits of layer size, in bytes
Low 32 bits of device start address for this

(out) Hgh 32 bits of device start address for

(out) Low 32 bits of device end address for this
(out) Hgh 32 bits of device end address for this
(out) Low 32 bits of device nenory start address
(out) Hgh 32 bits of device nenory start address

Si ze of
Si ze of

(out)
(out)

layer unit, in bits (8, 16 or 32)
| ayer cannot be changed with

Buf fer nane

Layer nane, cannot be changed

Total nunber of currently allocated buffers
Total nunber of layers in a buffer

(out)
(out)
(out)
(out)

© 2015 Phyton, Inc. Microsystems and Development Tools

143

ChipProg Control Options

Buf f er Nunber

The ordinal number of the memory buffer, content of which is required by
the ACI GetLayer function. Numbers of ChipProg memory buffers begin
from #0.

Layer Number

The ordinal number of the layer in the memory buffer, the content of which
is required by the ACI_GetLayer function. The layer numbers begins from
#0.

Layer Si zeLow,
Layer Si zeHi gh

Here the function returns the range of the memory layer's addresses in
bytes.

Devi ceSt art Addr Low,
Devi ceSt art Addr Hi gh

Here the function returns the device's start address for the selected
memory layer. This address is the device's property and strictly depends
on the device type; usually this value is zero. Do not mix it up with the
start address of a programming operation that can be shifted by a certain
offset value.

Devi ceEndAddr Low,
Devi ceEndAddr Hi gh

Here the function returns the device's end address for the selected memory
layer. This address is the device's property and strictly depends on the
device type. Do not mix it up with the end address of a programming
operation editable in the setup dialog. The selected layer's address range
can be defined as a difference between the end address and the start
address plus 1.

Devi ceBuf St art Addr L
ow,
Devi ceBuf St art Addr H
i gh

Here the function returns the start address for the selected memory buffer -
usually this value is zero.

This structure member specifies formats of the data in a memory layer: 8

UnitSi ze . . .) . .
for the 8-bit devices, 16 - for 16-bit devices and 32 for 32-bit devices.
This flag, if TRUE, disables resizing the memory layer by the

Fi xedSi ze ACI_ReallocBuffer function. There is one restriction on use of this flag:

since the layer #0 is always resizeable the FixedSize is always FALSE
for the layer #0.

Buf f er Nane

The name of the memory buffer as it was defined in the ChipProg interface
or by the ACI_CreateBuffer function call.

Resernved name of the memory buffer's layer. It cannot be changed by the

Layer Name
ACI.DLL user.
NunBuf f er s The number of the assigned memory buffers.
NurLayer s The number of layers in the programmer's memory buffers. This is a pre-

defined device-specific value that is the same for all memory buffers.

See also: ACI_GetlLayer

4.6.3.5 ACI_Buffer_Params

typedef struct tagAC _Buffer_Parans

© 2015 Phyton, Inc. Microsystems and Development Tools

144 ChipProg Device Programmers

{
U NT Size; /Il (in) Size of structure, in bytes

DWORD Layer 0Si zeLow, /1 (in/fout) Low 32 bits of layer 0 size, in bytes
DWORD Layer 0Si zeH gh; /1 (in/fout) Hgh 32 bits of layer 0 size, in bytes

11 Layer size is rounded up to a nearest val ue
supported by progranmer.
LPCSTR Buf f er Narrg; /1 (in) Buffer nane
U NT BufferNunber; /1l For ACl _CreateBuffer(): out: Created buffer nunber
/1 For ACI _ReallocBuffer(): in: Buffer nunber to realloc
U NT NunBuffers; /1 (out) Total nunber of currently allocated buffers
U NT NunlLayers; /1 (out) Total nunber of layers in a buffer

} AC _Buffer_Pararns;

This structure member represents buffer layer #0's size in Bytes. This
size lies in the range between 128K Bytes and 32G Bytes (may be
changed in the future). The ChipProgUSB allows assigning buffers with

Layer 0Si zeLow, fixed sizes only (see the list on the picture below). Any intermediate value

Layer 0Si zeHi gh will be automatically rounded up to one of the reserved buffer sizes. For
example, if you enter '160000' the programmer will assign a 1MB buffer
layer.

Since it is used with the ACI CreateBuffer function this structure member
represents the name of the buffer that will be created. If used with the
ACI_ReallocBuffer function will be ignored.

Buf f er Name

After calling the ACI CreateBuffer function this structure member returns
Buf f er Nunber the created buffer's number. After calling the ACI ReallocBuffer function -
the number of the buffer, size of which should be changed (re-allocate).

NUMBUf f er s Th!s structure member represents the current number of memory buffers
being opened.

This structure member represents the number of layers in memory

Nurayers buffers. This value is the same for all opened buffers.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 145
017 iyt
Buffer name, Code settings]
Buffer Mame
| Buffer #0
Size of layer "Code"
128 KB
[« Ok, J[x Cancel] [? Help]
See also: ACI_CreateBuffer, ACI_ReallocBuffer
4.6.3.6 ACI_Memory_Params
typedef struct tagAC _Menory_Parans
{
U NT Size; /Il (in) Size of structure, in bytes
U NT BufferNunber; /1 (in) Nunber of buffer of interest, the first buffer
nunber is 0
U NT Layer Nunber; /1 (in) Nunber of layer of interest, the first |ayer
nunber is 0
DWORD Addr essLow; /1 (in) Low 32 bits of address, in layer units (natural

devi ce address)

DWORD Addr essHi gh; /1 (in) Hgh 32 bits of address, in layer units (natural
to devi ce address)

PVO D Data; I/l (in || out) Buffer to data to read to or wite from

DWORD Dat aSi ze; /Il (in) Size of data to read or wite, in layer units,

mex. 16 MB (0x1000000)

DWORD Fi | | Val ue; /1 (in) Value to fill buffer with, used by AC _Fill Layer()
only
} ACl _Menory_Par ans;
Buf f er Nunber The ordinal number of the buffer to read from or to write into. The buffer

numerical order begins from zero.

Layer Nunber

The ordinal number of the memory buffer's layer to read from or to write into.

© 2015 Phyton, Inc. Microsystems and Development Tools

146 ChipProg Device Programmers

The layer numerical order begins from zero.
The start address in the memory layer to read from or to write into

Addr ess LQW, represented in the units specified by the chosen device manufacturer - Bytes,

Addr essHi gh Words, Double Words. This structure member is ignored in case of use with
the ACI _FillLayer function.
Since these are used with different ACI functions this structure member has
different meanings.In case of use with the ACI_ReadLayer function it
represents the pointer to the data read out from the ChipProg buffer's layer. In

Dat a case of use with the ACI WriteLayer - the pointer to the data to be written to
the ChipProg buffer's layer. The Data is ignored if it is used with the
ACI_FillLayer function.

_ This structure member represents the data format given in memory units

Dat aSi ze specified by the device manufacturer (Bytes, Words or Double Words). The
program ignores the DataSize if it is used with the ACI_FillLayer function.
This is the data pattern that fills an active ChipProg buffer's layer by means of

_ the ACI_FillLayer function. If, for example, the FillValue is presented in the

FillVal ue DWORD format then the 8-bit memory layers will be filled with the lower byte
of the FillValue pattern, the 16-bit layers - with the lower 16-bit word and the
32-bit layers - with a whole FillValue pattern.

See also: ACI_ReadlLayer, ACI_WriteLayer, ACI_FillLayer

4.6.3.7 ACI_Programming_Params

typedef struct tagAC _Progranmm ng_Par ans

{
U NT Size; Il (in) Si ze of structure, in bytes
BOOL InsertTest; /Il (in || out) Test if device is attached
BOOL CheckDevi cel d; /1 (in || out) Check device identifier
BOOL Rever seByt esOr der; /1 (in || out) Reverse bytes order in buffer
BOOL Bl ankCheckBef oreProgram // (in || out) Perform bl ank check before

pr ogr anmi ng

BOOL VerifyAfterProgram /1 (in || out) Verify after programm ng

BOOL VerifyAfterRead; /Il (in || out) Verify after read

BOOL SplitData; /1 (in || out) Split data: see ACI _SP_xxx constants

BOOL Devi ceAut oDet ect ; /1 (in || out) Auto detect device in socket (not
all of the programmers provide this feature)

BOOL Di al ogBoxOnError; /1 (in || out) On error, display dial og box

U NT Aut oDet ect Acti on; /1 (in || out) Action to performon device
autodetect or 'Start' button, see ACI _AD xxx constants

DWORD Devi ceSt art Addr Low; /1 (in || out) Low 32 bits of device start address
for programm ng operation

DWORD Devi ceSt art Addr Hi gh; /1 (in || out) Hgh 32 bits of device start address
for programm ng operation

DWORD Devi ceEndAddr Low, /1 (in || out) Low 32 bits of device end address

for programm ng operation

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 147

DWORD Devi ceEndAddr H gh; /1 (in || out) Hgh 32 bits of device end address
for programm ng operation

DWORD Devi ceBuf St art Addr Low, /1 (in || out) Low 32 bits of device nmenory start
address in buffer for progranmm ng operation

DWORD Devi ceBuf St art Addr Hi gh; /1 (in || out) High 32 bits of device nmenory start
address in buffer for progranmm ng operation
} AC _Progranm ng_Par ans;

This is the command to check the device insertion before starting any
I nsert Test programming operations on the device. The procedure will check if every chip
leads have good contact in the programming socket.

This is the command to check a unique internal device identifier before the

CheckDevi cel d - X
device programming.

This is the command to reverse the byte order in 16-bit words when
programming the device, reading it or verifying the data. This structure member
does not effect the data value in the ChipProg memory buffers - these data
remain the same as they were loaded.

Rever seByt esOr der

Bl ankCheckBef or ePr og | This is the command to check whether the device is blank before executing the
ram Program command.

This is the command to verify the data written into the device everytime after

Veri fyAfterProgram i
executing the Program command.

This is the command to verify the data written into the device everytime after

VerifyAfterRead i
executing the Read command.

This is the command to split data in accordance with the value of the constants
ACI_SP_xxx*in the aciprog.h file (see below). This allows 8-bit memory devices
to be cascaded in multiple memory chips to be used in the systems with 16- and
32-bitaddress and data buses.

SplitData

This is the command to scan all the device's leads in a process of the device
insertion into the programming socket. If the DeviceAutoDetect is TRUE the
programmer will check whether all of the device's leads are reliably gripped by
Devi ceAut oDet ect the programmer socket's sprung contacts. Only when the reliable device
insertion is acknowledged, the program launches a chosen programming
operation, script or a batch of single operations programmed in the Auto

Programming dialog.

If this structure member is TRUE then any error that occurs in any programming
Di al ogBoxOnError operation will generate error messages and will open associated dialogs. If this
attribute is FALSE the error messages will not be issued.

If the DeviceAutoDetect is TRUE then values of the ACI_AD_xxx** constants in
the aciprog.h file define a particular action triggered either on manual pushing
the Start button or upon auto detection of reliable insertion of the device into the

rogrammer's socket (see below).
AutoDetectAction [What to do (action)
value
Aut oDet ect Acti on ACI_AD_EXEC_FUNC|Launch the programming operation (function) currently highlighted
TION in the Program Manager tab.
ACI_AD_EXEC AUT [Launch a batch of single operations programmed in the Auto
O Programming dialog.
ACI_AD_EXEC_SCRI |Performthe script specified in the Script File dialog.
PT

© 2015 Phyton, Inc. Microsystems and Development Tools

148

ChipProg Device Programmers

4.6.3.8

ACI_AD_DO_NOTHIN [Do not act (ignore). Then it is possible to resume operations only by

G executing either the ACI ExecFunction or ACI StartFunction.

Devi ceSt art Addr Low,
Devi ceSt art Addr H gh

This structure member defines a physical start address of the device to perform
a specified programming operation (function). For example: "...read the chip
content beginning at the address 7Fh". Not all the functions use this parameter.

Devi ceEndAddr Low,
Devi ceEndAddr H gh

This parameter defines a physical end address, beyond which a specified
programming operation (function) will not proceed. For example: "...program the
chip until the address OFFh". Not all the programmer functions use this
parameter.

Devi ceBuf St art Addr Lo
w,
Devi ceBuf St art Addr Hi
gh

This structure member defines the buffers layer's start address from which to
perform a specified programming operation (function). For example: "...read the
chip and move the data to the buffer beginning atthe address 10h". Not all the
programmer functions use this parameter.

This is the bit definition from the aciprog.h header file:

* [/ ACI Data Split defines

#define ACI_SP_NONE

#define ACI_SP_EVEN_BYTE
#define ACI_SP_ODD_BYTE

#define ACI_SP_BYTE_0
#define ACI_SP_BYTE_1
#define ACI_SP_BYTE_2
#define ACI_SP_BYTE_3

O WNEO

** [| ACI Device Auto-Detect or 'Start' button action

#define ACI_AD_EXEC_FUNCTION
#define ACI_AD_EXEC_AUTO
#define ACI_AD_EXEC_SCRIPT

dialog

#define ACI_AD_DO_NOTHING

0 // Execute the function currently selected in the list
1 /! Execute the Auto Programming command
2 /I Execute the script chosen in the programmer Script File

3 // Do nothing

See also: ACI_SetProgrammingParams, ACl_GetProgrammingParams

ACIl_ProgOption_Params

typedef struct tagAC _ProgQption_Parans

{
Ul NT Si ze;

LPCSTR Opt i onNarre;

the form"List array nane”Li st

CHAR Units[32];

CHAR OptionDescription[64];
Li st String[64];

CHAR
Val ue. Li st | ndex

/1 (in) Size of structure, in bytes

/1 (in) Nane of the option. For lists, it should be in
Name", e.g. "Configuration Bits"Gscillator"
/1 (out) Option nmeasurement units ("kHz", "V',
/1 (out) Description of the option

/1 (out) For ACI _PO LIST option: Option string for

etc.)

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 149

UNT OptionType; /1 (out) Option type: see ACI _PO xxx constants

BOCL ReadOnl y; /] (out) Option is read-only

uni on /1 (in || out) Option val ue

{
LONG LongVal ue; /1 (in || out) Value for AC _PO LONG option
FLOAT Fl oat Val ue; /1 (in || out) Value for AC _PO FLQAT option
LPSTR String; /1 (in || out) Pointer to string for ACI_PO STRI NG option
ULONG CheckBoxesValue; // (in || out) Value for AC _PO CHECKBOXES option
U NT Statel ndex; // (in || out) State index for ACI_PO LI ST option
LPBYTE Bitstream // (in || out) Pointer to bitstreamdata for

ACl _PO BI TSTREAM opti on
} Val ue;
U NT VSi ze; /1 For ACI _SetProgQption():
I in: Size of Bitstreamif QptionType ==

ACl _PO Bl TSTREAM
/1 For ACI _GetProgQption():

I in: Size of buffer pointed by Bitstreamif
Opti onType == ACl _PO Bl TSTREAM
I in: Size of buffer pointed by String if OptionType

== AClI _PO STRI NG

I out: Size of buffer needed for storing Bitstream
data if OptionType == AC _PO Bl TSTREAM

I Set Value.Bitstreamto NULL to get buffer size
wi thout setting the bitstreamdata

I out: Size of buffer needed for storing String if
Opti onType == ACI_PO STRING including the termnating NULL character.

I Set Value.String to NULL to get buffer size
wi thout setting the string

U NT Mode; /1 (in) For ACI _SetProgOption(): SEE ACI _PP_MOXDE ...

constants
} ACl _ProgOption_Par ans;

The name of the programming option - for example "Vcc". For the ACI_PO_LIST
- type options, where the options are grouped into a list, you should specify both
Opt i onNane the list name and the option name in the following way: <List name>"<Option
name> (For example, Configuration_bits” Generator. There are no restrictions
on use of uppercase and lowercase characters in the option names.

After executing the ACI_GetProgOption function this structure member returns
Units an abbreviation of the units, in which the programmer represents or measures
the OptionName. For example, for the Vcc structure member, Units ="V".

After executing the ACI_GetProgOption function this structure member returns

ti onDescription
o P the option description.

After executing the ACI_GetProgOption function for the ACI_PO_LIST - type
Li st String options this structure member returns a string that describes the current

option's value or status. For example, XT - Standard Crystal for the option
Configuration bits"Generator.

After executing the ACI_GetProgOption function this structure member returns
the option's presentation format - for example: integer, floating point, list,

ti onType
o yp bitstream, etc.. See the ACI_PO_xxx* constant description in the aciprog.h

© 2015 Phyton, Inc. Microsystems and Development Tools

150

ChipProg Device Programmers

header file below.

Setting ReadOnly=TRUE disables modification of the option specified by the

ReadOnl y y .
ACI_GetProgOption function.
Use of this union depends on the ACI_PO_LONG* option type as itis shown in
the matrix below:

Option type Use of the Value union

ACI_PO_LONG The option is in the Value.LongValue

ACl_ PO_FLOAT The option is in the Value.FloatValue

ACI_PO_STRING The option is represented as a string, the pointer on w hich
is in the Value.String. See the note below .

ACI_PO_CHECKBOXES The option represents a 32-bit integer w ord, in w hich you
can individually toggle each bit that represents a particular

val ue flag in the option setting dialog. The option is in the
Value.CheckBoxesValue. See, for example, the Fuse
setting dialog for the ATtiny45 MCU implemented as an array
of check boxes.

ACI_PO_LIST It represents a list of alternative choices. Only one of them
can be selected at a time, so the parameter changes its
value in arange 0, 1, 2 to N. The option is in the
Value.CheckStateIlndex. See, for example, the Oscillators
setting dialog for the PIC12F509 MCU implemented as an
alternatively chosen radio buttons

ACI_PO_BITSTREAM Stream of bits. This option type is not in use yet but can be
used for future applications.

VSi ze Size of the buffer assigned for storing the string if the option type is the
ACI_PO_STRING. See the note below.
Mode of using of the structure member Value (See the description of the
ACI PP xxx** constants in the aciprog.h<) header file:

The Mode setting Use of the parameter Value

(value)

ACI_PP_MODE_VALUE 1) For measuring (getting): use the Value in order to get an
actual Option value;

2) For setting: use the Value to set a particular Option
value.

ACI_PP_MODE _DEFAULT |1) If used with the ACI_GetProgOption function it issues a

_VALUE command to put the default Option value into the Value.
2) If used with the ACI_SetProgOption function, the Value

Mode w ill be ignored; the Option will be set to the default level

defined in the ChipProg hardw are.

ACI_PP_MODE_MIN_VAL
UE

1)If used with the ACI_GetProgOption function it commands
to put the minimal Option value into the Value.

2) If used with the ACI _SetProgOption function the Value
w ill be ignored; the Option will be set to the minimal level
defined in the ChipProg hardw are, if it is possible for the
Option of this type.

AC|_PP_MODE_MAX_VAL
UE

1) If used with the ACI GetProgOption function it commands
to put the maximal Option value into the Value.

2) If itis used with the ACI_SetProgOption function the
Value will be ignored; the Option will be set to the maximal

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 151

level defined in the ChipProg hardw are, if it is possible for
the Option of this type.

This is the bit definition from the aciprog.h header file:

*/[ACl Programming Options defines

#define ACI_PO_LONG 0 /I Signed integer option

#define ACI_PO_FLOAT 1 // Floating point option

#define AClI_PO_STRING 2 [/ String option

#define ACI_PO_CHECKBOXES 3 /I 32-bit array of bits

#define ACI_PO_LIST 4 /I List (radiobuttons)

#define ACI_PO_BITSTREAM 5 /I Bit stream - variable size bhit array

**/| AClI Programming Option Mode constants for AClI_GetProgOption()/ACI_SetProgOption()
#define ACl_PP_MODE_VALUE 0 /I Get/set value specified in Value member of the
ACI_ProgOption_Params structure

#define ACI_PP_MODE_DEFAULT_VALUE 1 // Get/set default option value, ignore Value member
#define ACI_PP_MODE_MIN_VALUE 2 |/ Get/set minimal option value, ignore Value
member

#define ACI_PP_MODE_MAX VALUE 3 /I Get/set maximal option value, ignore Value
member

Note for use of the ACI_GetProgOption:

In order to get the buffer size necessary for storing the Option ACI_PO_STRING, you should make the
first call of the ACI_GetProgOption function with the Value.String= NULL. Then the function will return
the VSize equal to the buffer size, including zero at the string's end. In your program, assign the buffer of
this size, put the Value.String into the buffer pointer and call the ACI_GetProgOption again.

© 2015 Phyton, Inc. Microsystems and Development Tools

152

ChipProg Device Programmers

4.6.3.9

[C]CKSELT
[“]CKSEL2
[V]CKSELS
[¥]suTo
[JsuTt
[Cckaut
[F]CKDIvE
[]BODLEVELD
[1BODLEVELT
[1B0DLEVELZ
[CIEESAVE
CIwDTON

| Checkal | [Uncheckal | Al default

Mate
'Checked’ option means logical state '0°

G Uzeillioy

{ILP - Low Frequency Crystal
{(JRT - Standard Crystal
{JINTRLC - Intemal BC

@1 i

[# Ok J [x Cancel] [? Help]

See also: ACI GetProgOption, ACI SetProgOption

ACI_Function_Params

typedef struct tagAC _Function_Parans
{

U NT Size; /1 (in) Size of structure, in bytes

LPCSTR Funct i onNane; /1 (in) Nane of a function to execute. If a function is
under a sub-nenu, use '~ to separate menu nane from function nane, e.g. "Lock
Bits"Bit 0"

I To execute Auto Progranmm ng, set FunctionName
to NULL, enpty string or "Auto Programming".
U NT Buf ferNunber; /1 (in) Buffer nunber to use
BOOL Silent; /1 (in) On error, do not display error nessage box,

just copy error string to ErrorMessage
CHAR ErrorMessage[512]; /1 (out) Error message string if AC _ExecFunction()
fails

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 153

} ACl _Function_Par ans;

The name of the ChipProg function is one of those listed in the window Functions
of the ChipProgUSB Program Manager tab. They are divided in two group (see the
picture below): (1) the main functions applicable to a majority of the target devices
(Blank Check, Erase, Read, Program, Verify) and (2) the device-specific lower
level functions accessible through expandable sub-menus (for example, Program
Device Parameters, Erase Sectors, Lock Bits > Program Lock Bit 1,
EEPROM > Read, etc.). For such device-specific functions the FunctionName
Funct i onNane should be specified in the following way: <List name>"<Function name> (for
example, Device Parameters®Program).

To launch the AutoProgramming batch set the FunctionName either to NULL,
a blank string, or the "Auto Programming".

There is no restrictions in use of uppercase and lowercase characters in the
function names.

Buf f er Nunmber The ordinal number of the buffer the function operates with.

If this parameter is TRUE, then the error message dialog will be suppressed, the
function execution will be terminated and will return the

Si |l ent . .
ACI_ERR_FUNCTION_FAILED code, and the error message will be copied to
the ErrorMessage.

Error Message The destination of the error message that will be issued if the function fails.

| Program Manager | Options | Statisics|

Device Status: Auta-detect off

Buffer. | Buffer #0: "Code 128 KB), bytes
Functions
¥ Blank check
- Program -
Merify 5%
Erase Main functions
#- Aead CRC
=) Device Parameters
- Program

i He‘?d ¢« Device-specific

- Werify functions

-~ Erase Sectors
Auto Programming

See also: ACI _ExecFunction, ACI_StartFunction, ACI _GetStatus

© 2015 Phyton, Inc. Microsystems and Development Tools

154

ChipProg Device Programmers

4.6.3.10 ACI_GangTerminate_Params

4.6.3.11

typedef struct tagAC _GangTer ni nat e_Par ans

{

U NT Size; /1 (in) Size of structure, in bytes

I NT Si t eNunber; /1 (in) Site nunber to term nate operation (-1 == all
sites)

I NT Ti neout ; /1 (in) Tinmeout in mlliseconds (-1 == infinite) to
wait for operation break

BOOL SiteStopped; /1 (out) TRUE if operation was stopped, FALSE if tineout
occurred

} AC _GangTer m nat e_Par ars;

The site (socket) number you want terminating a current operation on. Socket
numbers begin from 0 (zero). If you specify SiteNumber = -1 (minus one) this will

Si t eNunber) : . .
terminate operations on all sites of the gang machine.
A time interval in milliseconds, during of which the ACI_GangTerminateFunction
holds expecting an acknowledgment of the successful operation termination. The
function will return control either upon getting such an acknowledgment or upon
Ti meout expiring a specified Timeout.

If you specify the Timeout = -1 (minus one) it will never expire.

This parameter indicates whether the ACl_GangTerminateFunction succeeded. In
case of successful termination an operation before expiring the Timeout the

SiteSt d . LT
' Lestoppe SiteStopped parameter sets TRUE. Otherwise, it will be set FALSE.

See also: ACI_GangTerminateFunction, ACI_TerminateFunction.

ACl_PStatus Params

typedef struct tagAC _PStatus_Parans

{

U NT Size; /1 (in) Size of structure, in bytes

U NT SiteNunber; /1 (in) For the Gang nopde: site nunmber to get status of,

BOOL Executi ng; /1 (out) The function started by ACl _StartFunction() is
executing

U NT Percent Conpl et e; /1 (out) Percentage of the function conpletion, valid id
Executing != FALSE

U NT DeviceSt at us; /1 (out) Devicel/socket status, see the ACI _DS XXX
constants

BOOL NewDevi ce; /1 (out) New device inserted, no function has been
executed yet. Valid if DeviceAutoDetect is ON

BOOL Functi onFai | ed; /1 (out) TRUE if last function failed

CHAR Functi onNane[128]; /1 (out) Nane of a function being executed if Executing
I= FALSE. If a function is under a sub-menu, function nane will be like this: "Lock
Bits"Bit 0"

CHAR ErrorMessage[512]; /1 (out) Error nessage string if FunctionFailed != FALSE
} ACI _PSt at us_Par ars;

© 2015 Phyton, Inc. Microsystems and Development Tools

ot |

ChipProg Control Options 155

If the ChipProgUSB was launched in the Gang mode (with the command line key /
gang) and controls either the gang programmer or a cluster of single programming
machines, then before starting the ACI GetStatus function the SiteNumber

Si t eNunmber) ’ _)
parameter must contain the ordinal number of the programming site (socket) for
which the status is required. The site humbers begin from #0.

Execut i ng This parameter is TRUE while the ChipProg operation, launched by the
ACI_StartFunction, is in progress.

Per cent Conpl | While the Executing == TRUE this parameter represents a percentage of the

ete function completion - from 0 to 100.

Devi ceSt at us

This structure member defines insertion of the device into the programmer ZIF
socket if the device insertion auto detection function is enabled. See the description
of the ACI_DS_XXX* constants in the aciprog.h file. See the matrix below:

Status Description

ACI DS_OK The device is in the socket and the device's leads are reliably gripped
by the programmer's ZIF socket's sprung contacts.

ACI_DS_OUT_OF_SOCKE | There is no device in the programmer's ZIF socket.
T

AC|_DS_SHIFTED The device's leads are reliably inserted into the socket but the device
is incorrectly positioned in the socket (shifted or inserted upside

dow n). The same status may indicate that the device type selected in
the Select Device does not correspond to the type of chip in the
programmer's socket.

ACI_DS_BAD_CONTACT | The device's leads are not reliably gripped by the socket's sprung
contacts. In most cases this is an intermediate situation w hile an
operator is inserting the chip to the socket or is removing it.

ACI_DS_UNKNOWN It is impossible to detect the status because the device insertion auto
detection feature is disabled or this feature is not supported by this
programmer at all.

NewDevi ce

This structure member is a flag that acknowledges replacing a programmed device
in the programmer's socket by a new, presumably a blank device. It works only
when the device insertion auto detection function is enabled. The NewDevice ==
FALSE while the already programmed chip is still in the socket and has not been
replaced by a new one. After removing the programmed device from the socket the
New Device toggles to TRUE.

Functi onFai |
ed

This is an indicator of the function execution's result. It is set to FALSE when the
ACI StartFunction launches a programming operation and remains FALSE while

the operation is in progress. If the programming operation fails and the parameter
Executing becomes FALSE the FunctionFailed flag toggles to TRUE.

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Device Programmers

This is either the name of the programming operation (function) being currently
executed or the name of the failed function, if the FunctionFalied == TRUE.

sage
== TRUE.

The destination of the error message if the function fails, i.e. the FunctionFalied

This is the bit definition from the aciprog.h header file:

*// ACl Device Status
#define ACI_DS_OK

#define ACI_ DS_OUT_OF _SOCKET
#define ACI_DS_SHIFTED

#define ACI_DS_BAD_CONTACT

#define ACI_DS_UNKNOWN

0 /I Device detected, pin contacts are ok
1 // No device in the socket
2 /I Wrong device insertion is detected (shifted or inserted

3 // Bad pin contact(s)
4 [/ Unknown (Auto Detect is probably off)

See also: ACI_ExecFunction, ACI_StartFunction, ACI_GetStatus

156
Functi onName
Err or Mes
upside down)
4.6.3.12

ACI_File_Params

typedef struct tagAC _File_ Parans

{
Ul NT

LPCSTR

Ul NT

Ul NT

Ul NT
constants

DWORD

0-

ACl _PLF B
DWORD
0)-

ACl _PLF B
DWORD
DWORD
DWORD

0
DWORD

0

Si ze;

Fi | eNane;
Buf f er Nunber ;
Layer Nunber ;
For mat ;

St art Addr essLow,

NARY

St ar t Addr essHi gh;

NARY

EndAddr essLow;
EndAddr essHi gh;
O f set Low;

O f set H gh;

} ACl _Fil e_Parans;

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

/1

(i
(i
(i
(i
(i

(i

(i

(i
(i
(i

(i

n) Size of structure, in bytes

n) File name

n) Buffer nunber

n) Layer nunber

n) File format: see ACl_PLF ... and ACl _PSF_xxx

n) Low 32 bits of start address for ACl _Fil eSave
For ACI _FilelLoad(): Ignored if Format !=

n) Hgh 32 bits of start address for AC _Fil eSave
For ACI _FilelLoad(): Ignored if Format !=

n) AC _FileSave(): Low 32 bits of end address

n) AC _FileSave(): Hgh 32 bits of end address

n) Low 32 bits of address offset for AC _Fil eLoad

n) Hgh 32 bits of address offset for ACl_Fil eLoad

Fi | eNane

The name of the file to be loaded to the ChipProg buffer.

Buf f er Nunber

The ordinal number of the destination buffer. Buffer numbers begins from zero.

Layer Nurmber

The ordinal number of the memory layer in the buffer. Layer numbers begins

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 157

from zero.

For mat

The loadable file's format. See the description of the ACI_PLF_XXX*
constants in the aciprog.h header file (see below).

St art Addr essLow,
St art Addr essHi gh

1) If used with the ACI _FileSave function this parameter specifies the first
(start) address in the source memory layer, from which the file will be saved.
2) If used with the ACI FileLoad function, but only when it loads a file in the
binary format (Format == ACI_PLF_BINARY), this parameter specifies the
first (start) address of the destination memory layer, in which the file will be
loaded. Binary images do not carry any addresses for the file loading.

EndAddr essLow,
EndAddr essHi gh

If used with the ACI_FileSave function this parameter defines the last (end)
address of the source memory layer, from which the file will be saved.

O fset Low,
O f set Hi gh

The address offset that shifts the file position in the destination memory layer.
The offset can be negative as well as positive.

This is the bit definition

from the aciprog.h header file:

*/| ACI File formats for ACI_FileLoad()

#define ACl_PLF_INTEL_HEX
#define ACl_PLF_BINARY
#define ACI_ PLF_MOTOROLA_S

#define ACl_PLF_POF
#define ACl_PLF_JEDEC
#define ACl_PLF_PRG
#define AC_PLF_OTP
#define ACl_PLF_SAV

#define ACl_PLF_ASCIl_HEX
#define AC_PLF_ASCIl_OCTAL

/! Standard/Extended Intel HEX
/I Binary image

/I Motorola S-record

/I POF

/I JEDEC

/I PRG

/I Holtek OTP

/I Angstrem SAV

/I ASCII Hex

/I ASCII Octal

©CoOo~NOoOUThA~,WNPEO

See also: ACI_FileLoad, ACI_FileSawe.

4.6.3.13 ACI_GangStart_Params

typedef struct tagACl_GangStart _Parans

{
Ul NT Si ze; /1 (in) Size of structure, in bytes
Ul NT Si t eNunber ; /1 (in) Site nunber to start auto progranm ng at
Ul NT Buf f er Nunber ; /1 (in) Buffer nunber to use

BOOL Sil ent;

[l (in) On error, do not display error nessage box.

} ACl _GangStart _Par ans;

Si t eNumber

The number of the device programmer socket in the gang programmer or in a
programming cluster comprised of multiple ChipProg programmers for which
the ACI GangStart function is launched. The site (socket) numbers begin
from #0.

Buf f er Nunber

The ordinal number of the memory buffer, content of which is required by the
ACI_GangsStart function. Numbers of ChipProg memory buffers begin from #O0.

© 2015 Phyton, Inc. Microsystems and Development Tools

Us¢

158

ChipProg Device Programmers

4.6.3.14

4.6.4

If this parameter is TRUE, then the error message dialog will be suppressed,
Si | ent the function execution will be terminated and the
ACI_ERR_FUNCTION_FAILED code will be returned.. Use the
ACI_GetStatus function to receive the error message.

See also: ACI GangStart, ACl GetStatus

ACI_Connection_Params

typedef struct tagACl_Connecti on_Parans
{
Ul NT Si ze; /1 (in) Size of structure, in bytes
LPVA D Connecti onl d; /1 ACl _Set Connection(): (in),
ACl _Get Connection(): (out)
/I Connection identifier
} ACI _Connection_Parans;

An identifier of the connection with a particular device programmer. This is an

Connectionl d)
abstract parameter that means nothing for the ACI user.

See also: ACI_SetConnection, ACI_GetConnection.

Examples of use

The ChipProgUSB software includes a few examples of use the Application Control Interface
functions and structures. The examples reside in the subdirectory ACI\Programmer ACI Examples in
the directory where the ChipProg program is installed.

The examples are written in the C language. They represent the projects that can be compiled by
Microsoft Visual Studio® 2008. The project sources can also be compiled by other C/C++ compilers,
sometimes with minor adjustments. After building the project you get the Windows consol application
executable file.

In order to adjust the example project (or a part of it) for use in your application you have to set correct
paths to the ACI functions called by the main() function. This includes paths to the ChipProg executable
file, to the file that is supposed to be loaded to the programmer's memory buffer or to be saved from the
buffer. You also have to specify your target device. See an example of the main() function's fragment
below.

[*+ main ° 01.07.09 17:37:24*/

/I Launch the programmer executable
if ('Attach("C:\\Program Files\ChipProguSB\\4 72 00\UPrognt2.exe", ™, FALSE)) return -1,

/I Select device to operate on
if (!SetDevice("Microchip”, "PIC18F242")) return -1;

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 159

// Load .hex file to buffer O, layer O
if ('LoadHexFile("C:\\Program\\test.hex", 0, 0)) return -1;

All examples uses the ACIL.DLL file that must be either in the same folder where the example executable
file resides or in the folder specified in the variable PATH. In the supplied examples the ACI.DLL file is
already copied into the folders where the MS Visual Studio creates executable files.

Example Descriptions

Each example has a comment header briefly describing the program purposes. Additionally, some
comments are inserted in the code texts. All examples begin from executing the ACI_Launch() function
that activates the programmer.

AutoProgramming.c

This is the simplest and most frequently used example of the ChipProg external control. The program
launches the programmer, selects the PIC18F242 target device, loads the test.hex file into the
programmer buffer, sets default programming options and then executes a preset Auto Programming
batch of functions: Erase, Blank Check, Program, Verify.

LongProgramming.c

This example shows how to monitor a process of the AutoProgramming procedure if it may last quite a
long time. The program acts as the example above. The programming launches by the
ACI_StartFunction. Then it keeps checking the percentage of the operation completion by means of the
ACI_GetStatus function. If the operation fails, the programmer issues an error message; otherwise it
allows operation to continue.

ProgrammingOptions.c

This example shows how to get, print out and change options settable in the Device and Algorithm
Parameters Editor window. First, the program checks the device insertion into the programmer's socket
by calling the ACI_GetStatus(&Status) function. Then, after detecting correct and reliable insertion of the
device into the programmer's socket, the program reads the current set of options by using the
ACI_GetProgOption function, and prints them out. Then it changes the Vpp value from the default to
10.5V and disables the device Brown-out Reset feature.

SaveMemory.c

This example shows how to save a binary image of the device in a file. First, the program checks the
device insertion into the programmer's socket by calling the ACI_GetStatus(&Status) function. Then,
after detecting correct and reliable insertion, the program reads data from a specified range of the
SSTB9V564RD device's memory and saves them in the file test.bin.

Checksum.c

This example shows how to calculate a checksum of the data read out from a device. First, the program
checks the device insertion into the programmer's socket by calling the ACI_GetStatus(&Status)
function. After detecting correct and reliable insertion, the program figures out the real size of the
SST89V564RD device's flash memory by executing the ACI_ExecFunction function. Then it assigns the
buffer 'buf in the host computer's memory in order to accommodate the data read out from the device,

© 2015 Phyton, Inc. Microsystems and Development Tools

160

ChipProg Device Programmers

4.7

4.7.1

moves the data to this buffer and calculates the checksum of the buffer's content.

Control from NI LabVIEW

The National Instruments' LabVIEW™ (hereafter LabVIEW) is a widely used and very popular graphical
development environment that enables integration of many design, production and test tools. It is
possible to drive ChipProg programmers from LabVIEW using such ChipProgUSB built-in tools as the

Command Line or ACI.

Command Line Control from LabVIEW

This is the simplest way to integrate LabVIEW with ChipProgUSB. In general the scenario includes: a)
setting the programming session options within the ChipProg user interface and b) further operating with
the programmer from the LabVIEW user interface. Here is an example of use:

1) Create a special folder for driving the ChipProgUSB software from the LabVIEW user interface - for
example C:\LabView\1.

2) On the computer desktop, make a copy of the ChipProgUSB icon. Rename it for use exclusively for
the LabVIEW control. Normally the path to this icon is "C:\Program Files\ChipProgUSB\x_xx_xx
\UprogNT2.exe", where the 'x_xx_xx"' means a current version of the ChipProgUSB software. Right
click on the created icon, select Properties, tab Shortcut and in the field Start in change the path to
the C:\LabView\1 (see below):

Phyton ChipProgUsB Properties

General Shortcut |Compatibility| Securityl

E;{? Phyton ChipProgUSE

Tamet type: Application

Tarmet location: 5_20_00

Target: Ingram Files\Chipproguskb\s_20_00Uprogh T2 exe"

Startin: I"C:\LabVi a1

Shortcut key: INDne

3) Power the ChipProg device programmer, connect it to a USB port of your PC and launch the
ChipProgUSB program by clicking the icon in the folder C:\LabView\1. When the programmer's user
interface opens, begin setting the programming session options by choosing the target device (for
example by pressing the F3 hot key). Then, after choosing the device, it is necessary to set up the
programming options and parameters within the ChipProgUSB windows, menus and dialogs below if
these options differ from the default ones. The following options are settable within the ChipProgUSB
GUI:

- Settings in the Program Manager window ,such as selecting functions to be included into the Auto

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 161

Programming batch (button Edit Auto...); these include Split data, Insert test, Auto Detect and other
settings in the Options tab; the number of chips to be programmed during the programming session and
other options in the Statistics tab.

- Settings in the Device and Algorithm Parameters Editor window that are device-specific, such as
boot vectors, fuses, lock bits, Vcc wiltage, oscillator frequencies, etc.

- Settings in the sub dialogs accessible through the Serialization, Checksum, Log file... menu, such
as setting algorithms for writing serial numbers and custom signatures into the devices being
programmed, a buffer checksum calculation, programming custom shadow areas, dumping data to log
files, etc.

- Miscellaneous settings in the sub dialogs accessible through the Preferences and Environment
menus, such as color, fonts, sounds, etc.

Then complete the programming session by means of including an appropriate command line keys into
the command line pattern:

- Specifying a method of control through the programming session (key /S);
- Choosing the target device being programmed (key /C<manufacturer>*<device>);
- Loading the file to be programmed and the file format (key /L<file name> /F<file format>);

- Specifying the Auto Programming mode (key /A);
- Launching the programmer into the hidden mode, when the ChipProgUSB GUI invisible (key /12).

4) To launch a ChipProg in the command line mode use a standard LabVIEW module SystemExec. The
picture below show a screen shot of the LabVIEW GUI front panel with the cp48_01.vi module loaded:

Notes:

- The device specified in the command line by the key /C must be the same as chosen in the
ChipProgUSB user interface.

- Including the /12 key in the command line makes the ChipProgUSB application main window invisible,
suppresses display of error messages but copies them to the Windows clipboard. If the session
completes successfully the ChipProgUSB application returns the error code 0; in case of errors, 1 is
returned.

If, for example, you want to program a HEX file myfw 1020.hex located in the folder Program Files
(x86)\ChipProgUsB\5_21 00 into the flash memory of a lot of Texas Instruments CC2540F256
devices, then the command line should have the following format:

"C:\Program Files (x86)\ChipProgUSB\5_ 21 00\UprogNT2.exe" /L"Program Files (x86)
\ChipProgUsB\5_21 00\myfw1020.hex" /FH /C"Texas Instruments® CC2540F256" /A /12

4) To launch a ChipProg in the command line mode use the standard LabVIEW SystemExec module.
The picture below shows a screen shot of the LabVIEW GUI front panel with the cp48_01.vi module
loaded:

© 2015 Phyton, Inc. Microsystems and Development Tools

162

ChipProg Device Programmers

Cp48_01.vi Front Panel

Fle Edit View Project Operate Tools Window Help

| [[@]/@[n][17pt Appication Font |~ |[3=~ [~ [~ | [#~]

Working directory

C:\LabView\l
Cal Chip Prog program

"C:\Program Files (x86)\ChipProgUSB\5_21_00\UprogNT2.exe"
Firmaware path

JL"C:\Program Files (x86)\ChipProgUsB\5_21_00\myfw1020.hex" /FH

Device selecting
/C'"Texas Instruments*~CC2540F256" /A (12

Result commandiine

5_21_00\myfw1020.hex" /FH [C"Texas Instruments*~CC2540F256" /A /12

Os error report
ChipProg Error report

LslE im. Wrong device identifier
@
ChipProg Exit
System output string prred Std output

I 1:

4

"C:\Program Files (x86)\ChipProgUsB\5_21_00\UprogNT2.exe" /L"C:\Program Files (x86)\ChipProgUSB\

Std error

and below is the same module block diagram:

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options 163

! - cp48_01.vi Block Diagram

File Edit View Project Operate Tools Window Help
- e

A [P

El

> [®] @[n][3][25][wa[=| -+ [17pt Appication Font [~ |[$o |[%a~ | [0+ |[=a]>

Call Chip Prog
fabz |
L el ; Std output
Result commandine
D e e
fabc | gEa
Firmaware path N = Std error
- wait until completion ey
L GEe] - li=al
[Device selecting
T ChipProg Exit Code
L fiz3]
g ||| L
; Os error report
Working directory =
fabz 1 Clears clipboard L = i
= Cipboard.Read ChipProg Error report
it App & fabe
Clipboard. Write | pa |
[t Text
v
(] | 2

The <ChipProg launches in the hidden mode; its GUI remains invisible during the programming session.
If no errors occur the ChipProg Exit box returns the code 0, otherwise 1 is returned. The error is
displayed in the ChipProg Error box report.

47.2 Control from LabVIEW with DLL

The ChipProgUSB software package includes the Virtual Instruments (V1) library developed in the
National Instruments' LabVIEW ™ graphical development environment. It also includes a few usage
examples of these virtual instruments. The library files reside in the LabVIEW folder located in the

ChipProgUSB installation directory. The library was created with the 2013 SP1 version of LabVIEW.

The DLL control is based on use of the Application Control Interface. Each VI is a wrapper over the
appropriate function exported by the ACI.DLL software module. You should be quite familiar with the
Application Control Interface functions and aspects of use in order to use the Virtual Instruments library.

Because of limitations imposed by LabVIEW on passing parameters to functions exported from DLLs,
the virtual instruments do not call the ACI.DLL functions directly. Instead, they call functions exported
from the intermediate DLL - the ACI_LV.DLL. This DLL packs parameters into structures required by
ACI.DLL and then calls its functions. The declarations of functions exported by ACI_LV.DLL are placed
in the C/C++ header file named ACIProgLabVIEW.h.

Each virtual instrument has its own front panel. It allows calling an appropriate Application Control
Interface function. In order to do this, before launching this function, you should launch the ChipProg by
means of the VI with the name ACI Launch. Each virtual instrument has input and output terminals for

© 2015 Phyton, Inc. Microsystems and Development Tools

164

ChipProg Device Programmers

inputting and outputting parameters of the ACI function senved by the virtual instrument.

The VI folder includes a sub-folder Examples that contains two use examples for virtual instruments. The
"Device Programming Example" demonstrates use of all major ACI functions, namely:

¢ launch a device programmer

¢ |oad a project

e display the device programmer buffer content in the GUI

e display a chosen device in the GUI

e display the device programmer socket's status (if a chosen programmer type supports this feature)
e write the serial number and increment it automatically in the device programmer buffer

e execute programming functions on the device and display the results in the GUI

e count numbers of successfully programmed and failed devices and display them in the GUI

To evaluate the example start up a ChipProg and launch the Device Programming Example by the
Run continuously button in the LabVIEW GUI. Then click the Launch Programmer button on the VI's
front panel. This will open a front panel of the virtual instrument ACI Launch. Enter a full path to the
ChipProgUSB executable file, for example: "C:\Program Files\ChipProgUSB\6_00_00\UprogNT2.exe"
and (optionally) specify the command line parameters. In order to awid confirming the programmer
restart, you can specify the path to the UprogNT2.exe in the constant string in the virtual instrument
diagram and uncheck the Prompt for programmer name, switches, etc... box on the front panel (see
the diagram below).

B! ACI_LV Iviib-Device Programming Example vi Block Diagram
View Project Operate Tools Window Help
SIMIE +|[17et Font |~ [%~ (6~ [l - 1 2
Serial Number:
Error Message Function Failed % Complets
B e e & Complete
ER = Device Status
BET] . ‘ I
{[1] "Launc®Programmer"- Value Change ~pf—————— ; Executing Slide
Source) [5oecify the correct file name for the programmer [0 B
Type file, its line switches and other (2000 M Text TedColor]
Time. of ACI_Launch if you do not want to display the = New Device r
CtiRef | [prompt.
aE Oldvel Prompt for programmer name, switches, etc 5
iV q g 2 : 7
NewVal ?gr ou S D) W True ~pf
C:\Program Files\ChipProgUSB\5_25_00\UprogNT2.exe S P
Function Name >
FR [Wo1| error out Fibc]
Tl = {Ee]]
- e W Faise -H
Device detected, pin contacts are ok
Rl Sl
N device i th sockel >
Embed at Address: Device detected. inserted with shift i HTrue -H
E Bad pin contaci(s - #Serial Number: >
Device Selected: .
W False -}f Unknown (Auto Detect is probably off
W »#Serial Number:|
} @m b e Aum—\r\tremer\t Serial Number
Programmer Connected Launch Prog LA
[w—5
e :
T Embed at Address: [zon
[—71] 5
T
(True ~P]
Launch Programmer Load Project Program Clear Al =2ed senial number
Auto-Increment Serial Number
Total: * 4
o
L4 | j_‘

Then, after launching the programmer, its current status will become visible in the virtual instrument's
front panel. Clicking the Start button launches the operation with the name that you can enter into the
Function Name field, for example: Blank Check. If the Function Name field is left blank then the
programmer will execute the Auto Programming function. See the pictures below:

© 2015 Phyton, Inc. Microsystems and Development Tools

ChipProg Control Options

File Edit View Project Operate Tools Window Help

3 @ 1

5[]

ACI_LY

EGCJM».

ProgrammerExe
% C:\Program Files\ChipProgUSB\6_26_00\UprogNT2. exe

CommandLine

/g

=

¥ Programmer window visible (Debug) ‘

Launch Programmer ‘

Programmer Name Mumber of Sites

0

error out %

status code source

ﬂ]o

L

L

[

kB ACI_LV . vlib:Device Programming Example.vi

File Edit View Project Operate Tools Window Help

165

=

AGLLY

Gci
]
e e
Address Buffer Dump J
¥ Prompt for programmer name, switches, etc... Project File Name- i\ Ox0 oo oo |oo oo
i = 00 |00 [oo |00
Launch Programmer 0 oo oo oo
Load Broject 00 00 |00 |00
. Programmer Connected
00 |00 |00 |00
Device Selected: |SST SSTE9VE64RD = Entzdears e
BEE Embed at Address:
Device Status Unknown (Auto Detect is probably off) wam New Device ek HDX55FE
Serial Number:
Function Name Program . Executing Total: 3 QHMDDGDMZ
_ 78 % Complete Clear All W Auto-Increment Serial Number
| Start |
error out
- - —— stalus code
e cti
rror Message unction Fai il HO— |
source
—1
—1
Kl 1

© 2015 Phyton, Inc. Microsystems and Development Tools

166

ChipProg Device Programmers

5

5.1

5.2

Operating with Programmers

The topics included in this chapter briefly describe basic operations with the ChipProg programmers.

Inserting devices to a programming socket
Inserting devices in DIP (dual-in-line) packages.

The ChipProg-40, ChipProg-48 and ChipProg-G41 programmers are equipped with 40- or 48-pin ZIF
sockets allowing operating on any DIP-packed devices without additional adapters. They can
accommodate DIP-packed devices with different number of leads (from 4 to 48) and different widths of
the package up to 600 mil. Just a few old DIP-packed devices require special adapters to be
programmed by ChipProgs. The Device Information window prompts if some adapter is required for
the selected device and, if so, it displays the adapter type. The pictogram showing a correct insertion
position of the device is on the programmer at the left of the socket as well as in the Device
Information window. Practically all DIP-packed devices can be inserted in the way shown on the
pictogram. However, there are a few old devices with a non-standard insertion positioning. If such a
device is chosen the Device Information window displays how to insert the device.

Inserting devices in non-DIP packages.

Programming of the devices in SOIC, PLCC, QFP, BGA and other non-DIP packages requires special
adapters. The adapters design allows plugging them into the programmer ZIF sockets. The Device
Information window prompts the adapter type for a selected device.

Any adapter is implemented as a small transition board with two rows of dual-in-line pins pluggable
into the programmer ZIF socket on a bottom side and a ZIF socket of a particular type (SOIC, PLCC,
QFP, BGA, etc.) on a top. The adapter transition board is labeled with a "#1 pin" key mark that helps
to properly position the adapter into the programmer socket. The Device Information window
displays the adapter position into the programmer ZIF socket.

Auto-detecting the device

If you checked the AutoDetect checkbox on the main window toolbar then a ChipProg programmer
will automatically detect insertion of the device into a programming socket and will check if the
device's leads are reliably squeezed by the socket contacts. In case of the bad contact with any
single lead the programmer blocks further operations and issues a warning that indicates the pin
numbers with bad contacts. This prevents destroying the device or incorrect programming.

The AutoDetect signal can be used for triggering a programming operation by checking the Auto-
Detect presence of device in the socket box in the Options tab of the Program Manager
window. One of the following options can be set here:

e Execute the function selected in the 'Function’ list (the Program Manager tab);
e AutoProgramming;
e Execute script.

At this point the AutoDetect trigger replaces the programmer command executed by a mouse click or
pressing the Start button. This significantly speeds up and simplifies programming of the device
series.

© 2015 Phyton, Inc. Microsystems and Development Tools

Operating with Programmers 167

5.3 Basic programming functions

Sub-topics of this chapter describe all the basic ChipProg-40 and ChipProg-48 operations in a single
programming mode, when a device is programming in the programmer socket. Specific operations for
programming more than one device at one time are described in the Multi- and Gang programming

5.3.1 How to check if adeviceis blank

1. Select the target device type, pressed the button Select Device in the Main toolbar or select the
command Main menu > Configure > Select device.

2. Insert a device of the selected type into the programmer socket or into the adapter socket.

3. a) Click the Check button on the main toolbar or
b) Double click on the Blank check function line in the Function list of the Program Manager

window or
c¢) Select the Blank check function line in the Function list of the Program Manager window and

click the Execute button or
d) Select the Main menu > Commands and click on the Blank check line

then wait for the message Checking ... OK in the Program Manager window, or for the warning
message if the device is not blank

5.3.2 How to erase adevice

1. Make sure the device is electrically erasable. Some devices are not erasable; these may be
programmable once, UV erasable, or over-writable — in this case the Erase button is blocked (grey

out).

2. If the device is electrically erasable:
a) Click the Erase button on the main toolbar or
b) Double click on the Erase function line in the Function list of the Program Manager window
or
c) Select the Erase function line in the Function list of the Program Manager window and click
the Execute button or
d) Select the Main menu > Commands and click on the Erase line

then wait for the message Erasing ... OK in the Program Manager window or for the warning
message if the device is not blank after erasing.

5.3.3 How to program a device

In order to program a blank device you need to perform a few consecutive operations:

load the file, that you want to write to the device;

edit the file (if necessary);

configure the device to be programmed (if necessary);

write the prepared information into the device and verify the programming.

© 2015 Phyton, Inc. Microsystems and Development Tools

168

ChipProg Device Programmers

5.3.3.1

5.3.3.2

5.3.3.3

5.3.3.4

How to load a file into a buffer

1. Select the Main menu > File > Load or click the Load button on the local toolbar of the Buffer
window.

2. In the pop-up dialog box enter the source file name, select the file format, addresses, buffer and
sub-level to load the file to.

3. Wait for the message File loaded: "...... " in the Program Manager window or for a warning
message if the file cannot be loaded for some reason.

How to edit information before programming

1. Ifyou need to modify source data before writing into the target device, then open the Buffer Damp
window. Newer forget that the View button should be released to enable editing.

2. Make necessary changes in the window via the Modify dialog or appoint the data to be modified
and type the new data over the old data.

How to configure the chosen device

1. If any parameters displayed in the Device and Algorithm Parameters window can be changed by
editing, their names are shown in blue.

2. Click on the name of the parameters to be changed to open an appropriate dialog. Set a new value for
the parameter or check/uncheck appropriate boxes and click OK. The parameter value will change its
color to red.

3. Continue for other parameters that should be changed. All preset changes will become effective in the
target device only upon programming via the Program Manager programming function.

How to write information into the device

1. Click the Options tab in the Program Manager window. Check the options you need. We
recommend that you always check the Blank check before programming and the Verify after
programming check-boxes to make programming more reliable.

2. Click the Program Manager tab. Select the Program line in the Function box, and double click
it to start programming of the primary memory layer (Code) or click the Execute button to do so.
Alternatively, you can do the same by clicking the big Program button or selecting the command
Menu > Commands > Program.

3. Wait for the message Programming ... OK in the Operation Progress box of the Program
Manager tab. If an error has occurred the ChipProgUSB issues an error message.

4. Execution of the main Program function (always shown in the beginning of the Function list) writes
a specified buffer layer content to the Code device memory. Howewer, other buffer layers may exist
for the selected device (Data, User, etc.). If more than one buffer layer exists for the selected device
go down to the list of functions, expand those that are collapsed and execute the Program
functions for as many types of memory as the device has (Data, User, etc.). Skip this if just one
memory layer Code exists for the device.

© 2015 Phyton, Inc. Microsystems and Development Tools

Operating with Programmers 169

5. IMPORTANT! After programming of all the memory layers (Code, Data, User, etc.) you need to
program the options preset in the Device and Algorithm Parameters Editor window, if they have
been modified. Go down to the Device parameters & ID line, expand it if collapsed, select the
Program function and double click it. Continue until every parameter that was changed in the
Device and Algorithm Parameters window is successfully programmed.

6. Some microcontrollers can be protected against unauthorized reading of the written code by setting
a set of Lock bits. Go down to the Lock bits line, expand it if collapsed and double click the lock
bit# lines one by one. You can optionally lock only certain parts of the device memory. Continue
until every lock bit is set.

7. After every operation above make sure that you watch the Ok [xxxxx... Ok] message in the
Operation Progress box of the Program Manager tab. In case you get an error message stop the
programming and troubleshoot the issue.

5.3.4 How toread a device

There are several ways for reading the device content to an active buffer:

a) Click the Read button on the main toolbar or

b) Double click on the Read function line in the Function list of the Program Manager window or
c¢) Select the Read function line in the Function list of the Program Manager window and click
the Execute button or

d) Select the Main menu > Commands and click on the Read line

then wait for the message Reading ... OK in the Program Manager window or for the warning
message if the device could not be read out.

5.3.5 How to verify programming

There are several ways for checking if the device was programmed correctly:

a) Click the Verify button on the main toolbar or

b) Double click on the Verify function line in the Function list of the Program Manager window
or

c¢) Select the Verify function line in the Function list of the Program Manager window and click
the Execute button or

d) Select the Main menu > Commands and click on the Verify line

then wait after that which wait for the message Verifying ... OK in the Program Manager window
or for the warning message if the device failed during the verification process.

5.3.6 How to save dataon adisc

1. After you have read out the device content into the Buffer or a specified Buffer layer you may need
to sawe the read data on a PC disc. To sawe the data:
a) Click the Save button on the local toolbar of the Buffer window or
b) Select the Main menu > File > Save

© 2015 Phyton, Inc. Microsystems and Development Tools

170 ChipProg Device Programmers

2. In the pop-up dialog specify the destination file name, format, start and end addresses of the source
(the buffer), and the source sub-level, and click OK.

5.3.7 How to duplicate adevice

1. Insert the master device to be copied (duplicated) into the programmer socket.

2. Read it to an active buffer

3. Wait for the message Reading... OK in the Operation Progress box of the Program
Manager tab in the Program Manager window. Make sure the master device content is in a
current buffer.

4. Remowe the master device from the socket and replace it with a blank device to be
programmed. If necessary, check to see if it is blank.

5. Program the device. If you need to make more than one copy of the master device repeat the
operations #4 and #5 as may times as necessary.

5.4 Programming NAND Flash memory

This chapter describes some peculiarities of the NAND Flash memory devices programming. The
NAND Flash and NOR Flash memory architectures and physical implementations are very different
and, therefore, operations with NOR and NAND Flash devices hawe their own peculiarities. In terms of
the programmer setup and operations, working with the NAND Flash devices is more complex and the
programming results are very sensitive to the accuracy of the programming options setup. Inaccurate
setup causes wrong device programming.

5.4.1 NAND Flash memory architectures

The NAND Flash memory array comprises of the blocks of pages. Each block usually includes 16, 32,
64 and more pages. Conditionally, the NAND Flash devices can be divided in two groups: the "small
page" and "large page" devices. The "small page" size is 512 bytes for the 8-bit devices and 256 bytes
for the 16-bit devices; the "small page" NAND Flash memory devices' capacity varies from 128K to 512K
bits. The picture below shows the "small page" NAND Flash memory architecture of the
STMicroelectronics™ NAND devices.

© 2015 Phyton, Inc. Microsystems and Development Tools

Operating with Programmers 171

x8 DEVICES x16 DEVICES

Block = 32 Pages Block = 32 Pages
Page = 528 Bytes (512+16) Page = 264 Words (256+8)

" / /P:‘Q@
eo?®

L2
o
st half Page |2nd half Pags] Main Area
(256 bytes) | (256 bytes)
Block—m Block —m
Pag Page —»
8 bits 16 bits
+—— 512 Bytes _""'l—b- *+— 256 Words —"4?&‘/
thees Words
age Buffer, 512 Bytes Page Buffer, 264 W\ V
| 512 Bytes |aiBs / 8 ﬁv 256 Words idtd /16 blts

AlDTSET

The "large page" size is 2048 bytes for the 8-bit devices and 1024 bytes for the 16-bit devices; the "large
page" NAND Flash memory devices' capacity varies from 256K to 32G bit capacity and higher. The
picture below shows the "large page" NAND Flash memory architecture of the STMicroelectronics ™
NAND devices. The latest "large page” NAND Flash devices have as large as 4096 byte page size.

X8 DEVICES x16 DEVICES
Block = 64 Pages Block = 64 Pages
Page = 2112 Bytes (2,048 + 64) Page = 1056 Words (1024 + 32)
‘g'a Me,?i
& &
® o
Main Area Main Area
Block—» Block —m
Pag Page —p|
8 bits 16 bits
<+—— 2048 Bytes - <—— 1024 Words —-m@»/
Bytes \Words
age Buffer, 2112 EV age Buffer, 1056 Words
| 2,048 Bytes a0k = el 1,024 Words /16 blts
AlD3BS4

© 2015 Phyton, Inc. Microsystems and Development Tools

172 ChipProg Device Programmers

Read also about bad blocks in the NAND Flash memory devices.

5.4.1.1 Invalid blocks

NAND Flash memory devices have invalid memory blocks that cannot be used for storing data because
some memory cells inside of the device have physical defects - either inherent in a process of the device
manufacturing or acquired in a process of the device exploitation and reprogramming in the user's
equipment. Since a percentage of invalid blocks is pretty small inside of the chip (usually less than 1%)
it is possible to use the device for data storing. In order to use NAND devices with bad blocks these
blocks should be marked in a certain way to prevent fetching data from these blocks or writing in it. This
document equally uses both known terms for such blocks: invalid and bad.

Locations of the invalid blocks or the invalid blocks map should be accessible by the application for
skipping the bad blocks or handling them in other way. To keep the invalid block map every NAND Flash
device has a special cell array, known as the Spare Area, for storing addresses of invalid blocks. See
the Spare Area location in the NAND Flash memory architecture diagrams.

The Spare Area in "small page" 8-bit devices is 16 large, 16-bit devices - 8 Words. The Spare Area in
"large page" devices - 64 Bytes and 32 Words respectfully. Though the Spare Area is dedicated for
marking bad blocks it can be also used as a general purpose memory for storing the user's data. To
awid accidental losing of the bad block map it is recommended to assign a whole entire Spare Area for
storing the invalid block map and do not write in this area anything else.

5.4.1.1.1 Managing invalid blocks

There are three mostly used methods of handling invalid memory blocks:

Skip Block method
Reserved Block Area method
Error Checking and Correction

The ChipProg programmers support all the methods abowe.

5.4.1.1.1.1 Skipping invalid blocks

This is the simplest method of managing invalid blocks. The programming algorithm first reads the entire
Spare Area to collect the addresses of invalid memory blocks. Then, the programming equipment
writes data to the device page by page with checking the block addresses. If the current block's number
is marked as bad the programmer skips this block and write into the next valid one.

5.4.1.1.1.2 Reserved Block Area

This method is based on the idea of replacing invalid blocks with good blocks by re-directing reading
and writing operations to these good blocks. To implement this method the programming equipment
splits the entire memory in three linear memory areas following each other from the start address of
the memory device. Each of these areas may include both good and bad blocks:

e The User Block Area (UBA) - a linear memory array for storing the user's data,;

© 2015 Phyton, Inc. Microsystems and Development Tools

Operating with Programmers 173

e The Block Reservoir - a linear memory array that follows right after the User Block Area; good
blocks from the Block Resenwir replaces invalid blocks from the User Block Area;

e The Reserved Block Area (RBA) - this part of the device's memory stores the information about
bad blocks in the User Block Area replaced by good blocks from the Block Resenvir. This map is
represented by pair of addresses of the invalid UBA's blocks and corresponding good blocks from
the data reserwir. The first good block in the RBA stores the the RBA map table, the second a
duplicate of it in case of the RBA table corruption.

The programming algorithm works in the following way:
1) it splits blocks of the device in three areas: User Block Area, Block Reservoir and Reserved

Block Area;

2) it reads the Spare Area and builds the RBA map table with the following structure of the data

fields:

Field: RBA Marker | Count Field |Invalid Block Replaced |Invalid Block Replaced | Invalid Block Replaced
Block Block Block

Size:| 2 6aiiT a 2 6aiiT a 2 6aiiTa 2 6aiiTa 2 6aiiTa 2 6aiita | 2 baiiTa 2 6aiiTa

where:

RBA Marker - is OFDFEh (there is an equivalent term for this parameter used in some NAND Flash
device data sheets: Transition Field).

Count Field - starts from 1 and increments by one for each page of the map table.

Invalid Block - Number of the invalid block in the UBA being replaced.

Replaced Block - Number of the valid block in the Block Resenwir that replaces the invalid block
abowe.

The Invalid Block - Replaced Block pairs follow each other till the page break.

When the programming equipment detects an invalid block in the User Block Area it appoints the first
available valid block in the Block Reservwir and updates the RBA table to keep track of relation
between invalid blocks in the User Block Area and replaced good ones in the Block Resenwir.

5.4.1.1.1.3 Error Checking and Correction

To maintain the stored code integrity it is recommended to use known Error Checking and
Correction (ECC) algorithms. Most NAND Flash device manufacturers publish application notes that
describe the ECC algorithms suitable for using their devices in different applications. To implement a
particular ECC algorithm please check the manufacturer's website. All the ECC-related information are
written into the Spare Area.

5.4.1.1.2 Invalid block map

ChipProg programmers create the invalid block map into the buffer layer Invalid Block Map as a
continues bit array. Valid (good) blocks are represented by zeros (0), invalid (bad) - by ones (1). See
the tab Invalid Block Map in the memory buffer:

© 2015 Phyton, Inc. Microsystems and Development Tools

174 ChipProg Device Programmers

Eﬂ Addr | Loacd | Save |

{File: Mone

Buffer Check sun; 00000003

\aoooaooo: EIEIEIEIEIEIEEI 0ooooool Qooooooo oc
nooooooT: DDDDDDDB\D!Z_I__DQ'ﬂﬁ:ED ooooooon oC

(0000000E: - lid blocks #1 and #8 L
00000015: I
D00000LC: + oo oo oo e e aC

For example abowe:

¢ the value 02h (or 00000010B) at the address 0 means that the blocks #0, 2, 3, 4, 5, 6, 7 are valid
while the block #lis invalid;

¢ the value 01h (or 00000001B) at the address 1 means that all the blocks in the range #9 to #15 are
valid while the block #8 is invalid.

5.4.1.2 Marking invalid blocks

After the device final testing the device manufacturer' programming equipment fills the working memory
cells with the FFh value. Blocks that are considered to be invalid are marked by writing a non FFh
value (usually 00h) at a certain address in first page (page #0). This address in the NAND Flash Spare
Area is the device dependant; it is specified in the manufacturer data sheet.

Memory organization The marker address
in the Spare Area

8-bit array, page size - 512 Byte. 5

16-bit (word) array, page size - 512 Words. 0

8-bit array, page size - 2048 Byte. Oor5

16-bit (word) array, page size - 1024 Words 0

Take in account that the device itself has no special protection against occasional erasing of the Spare
Area cells when you intentionally erase a whole memory array. However, these Spare Area cells may
store the bad blocks markers written ether by the chip manufacturer or by the chip user after
reprogramming. Being lost the bad block map cannot be restored unless you keep the invalid block
map as a file, etc. It is important to keep track of the invalid block map changes by storing the markers
before the memory erasing and restoring them after the chip erasing. The ChipProg programmers
automatically restore the invalid block map unless the Invalid Block Management is not the Do Not
Use.

The ChipProg creates the invalid block map into the buffer layer Invalid Block Map as a continues bit
array. Valid (good) blocks are represented by zeros (0), invalid (bad) - by ones (1). For example:

the value 02h at the address 0 means that the blocks #0, 2, 3, 4, 5, 6, 7 are valid while the block #1is
invalid;
the value 01h at the address 1 means that all the blocks in the range #9 to #15 are valid while the

© 2015 Phyton, Inc. Microsystems and Development Tools

Operating with Programmers 175

5.4.2

block #8 is invalid.

Programming NAND Flash devices by ChipProg

Programming NAND Flash memory devices by a Phyton ChipProg programmer begins from accurate
setting of the programming options and parameters in the Device and Algorithm Parameters window.
The screen capture below shows the window for the NANDO4GW3B2BN device. The Device
Parameters are divided in two setting groups: Access Mode and Access Mode Parameters.

Edit | Min. Value | Max value| Default | All Default |
Mame Walue Description
Device Parameters
= Access Mode AcoessMode
Itrvalid Block (IB) Management | Skip B ltvalid Block Management
Spare Area sage Do Mat Lse Spare Area Usage
Guard Solid Area Dizable Usging Special Area Without [nvalid Blocks [nzide
Talerant Verify Feature Dizablz Toaleration the specified numbers of single-bit erars in the specified frame size in Yerfication

Irvalid Block Indication Options | 1B Indication Yalue: 00 | Invalid Block Indication 'alue
Access Mode Parameters

Uger Area - Start Block a0 Start Block of User Area

dger &rea - Mumber of Blocks 4000 MWumber of Blocks in User &rea

Solid &rea - Start Block 0 Start Block of Area without Irealid Blocks

Solid Area - Mumber of Blocks 1 Murnber of Blocks in Area without [rvalid Blocks

RE& &rea - Start Block, 4040 Start Block of Reserved Block Area

RE& Area - Mumber of Blocks 14 Mumber of Blocks of Rezerved Block Area

Acceptable rumber of emors 4 Single-Bit Error's Mumber for Tolerant Werification
Algarithm Parameters

Yoo 300 Power supply voltage

T a28aa
Socket Scheme | Maotes

lDevice: STHicroelectronics HMANDO4GW 3B 2BN .

IMPORTANT NOTE!

Any changes made in the ‘Device and Algorithm Parameters’ window do not
immediately cause corresponding changes in the target device. Parameter settings
made within this window just prepare a configuration of the device to be programmed.
Physically, the programmer makes all these changes only upon executing an
appropriate command from the ‘Program Manager’ window.

© 2015 Phyton, Inc. Microsystems and Development Tools

176 ChipProg Device Programmers

5.4.2.1 Access Mode

The Access Mode line, normally collapsed, can be expanded to invoke setting dialogs for one of the
following modes:

Invalid Block Management

Spare Area Usage
Guard Solid Area

Tolerant Verify Feature
Invalid Block Indication Option

5.4.2.1.1 Invalid Block Management

Here you can specify the algorithm of managing invalid blocks. Clicking the Invalid Block
Management menu line opens the pop-up dialog:

F‘# IV R Y S a e ETTTEN %]

(Do Mot Uze
©iskip I8
(1 5kip |B with M ap in O-th Block,
() REA [Reserved Block Area)

[# Ok] [x Eancel] [? Help]

Select one of four options:

Do Not Use Ignore information about invalid blocks and do not care of the invalid block
management. Writing into invalid blocks is enabled.

Skip 1B Skip invalid blocks

Skip IB with Map in O-th [SKip invalid blocks, put the Invalid block map in the block #O.

Block

RBA (Reserved Block Use the RBA algorithm

Area)

5.4.2.1.2 Spare Area Usage

Here you can specify of how to use the Spare Area. Clicking the Spare Area Usage menu line opens
the pop-up dialog:

© 2015 Phyton, Inc. Microsystems and Development Tools

Operating with Programmers 177

|I_<_i?:i SPETEVTETUEHEE (%]

(3 User D ata %
{1 User D ata with |B Info Forced

[# ok] [x Eancel] [? Help I

Select one of three options:

Do Not Use This default option means: "in no case do not use Spare Area for storing user's
data". Choosing this default option prevents overwriting invalid block markers in the
Spare Area by the user's data. After erasing the device Flash memory markers of the
invalid blocks will be restored in the Spare Area.

User Data The Spare Area can be used for storing the user's data; the invalid block markers
written into the Spare Area will not be protected against overwriting by user's data.
If this option is chosen the programmer writes the data from its buffer into the major
device memory and when this memory is completely full the programmer begins
writing into the Spare Area. The programmer buffer displays merged memory pages,
including the Spare Area.

User Data with | The Spare Area can be used for storing the user's data but the invalid block markers
IB Info Forced |written into the Spare Area will be protected against overwriting by user's data.
Even if the programmer had overwritten the invalid block markers in the Spare Area it
will restore these markers after completion of the programming operation.

5.4.2.1.3 Guard Solid Area

Some applications require fetching the information with strictly linear address range, e.g. the memory
must be free of invalid blocks in this range. In particular, initialization of a microcontroller is possible only
if the loading code is fetching from the memory device with continiously linear address space, so the
source memory must not have invalid blocks. By default the ChipProgUSB disables guarding the
memory area. Clicking the Guard Solid Area menu line opens the pop-up dialog where you can toggle
the options:

[@ G Solild gy % |

() Enable

[lf k. J [x Eancel] [? Help]

When you select Enable in the dialog above you should specify this area by setting two parameters in
the Solid Area setting dialog:

Start Block - the address of the first memory block that does not include invalid blocks
Number of Blocks - the number of valid blocks in the specified memory area

© 2015 Phyton, Inc. Microsystems and Development Tools

178 ChipProg Device Programmers

If in a process of the programming \erification the ChipProg locates an invalid block within the specified
Solid Area it will issue an error message and stop the current programming operation.

5.4.2.1.4 Tolerant Verify Feature

Here you can enable working with the memory having a certain number of errors within a specified
memory range or disable this feature. By default is is disabled. Clicking the Tolerant Verify Feature
menu line opens the pop-up dialog where you can toggle the options:

[‘ﬁ']’ularunt Warify Fautur:—{}5 %]

[t’ k.] [x Eancel] [? Help]

Usually this option is applicable in case of use the Error Checking and Correction (ECC) method of
managing invalid blocks when you can tolerate with some errors in the data fetched from the memory
device. When you select Enable in the dialog above you should specify two parameters in the

Acceptable number of errors dialog:

ECC Frame size (Bytes) - Size of the memory array where you allow to have errors, in Bytes.
Acceptable number of errors - Acceptable number of single bit errors.

5.4.2.1.5 Invalid Block Indication Option

Here you can choose the invalid block presentation in the ChipProgUSB memory buffer. Clicking the
Invalid Block Indication Options menu line opens the pop-up dialog where you can select either the
'00h' value (default) or the 'OFOh":

[‘wﬁ I el B luee [nes i Ui %]

(3B Indication WYalue: 00
(| Indication Walue: FO

[t’ k. J [x Eancel] [? Help]

5.4.2.2 Access Mode Parameters

This Access Mode Parameters submenu of the Device Parameters menu allows to invoke setting
dialogs for the following parameters:

User Area

Solid Area

RBA Area

ECC Frame size

Acceptable number of errors

© 2015 Phyton, Inc. Microsystems and Development Tools

Operating with Programmers 179

Some of the parameters abowe are associated with appropriate Access Maodes.

5.4.2.2.1 User Area

Some basis programming operations, including Program, Read, and Verify can be set applicable not
to an entire NAND Flash memory device but to a specified part of the device memory - the User Area.
The Erase and Blank Check operations are applicable only to the entire device. The User Area's
boundaries are set by individual setting of a pair of the following parameters:

User Area - Start Block - the first memory block of the User Area.
User Area - Number of Blocks - the number of blocks in the User Area.

To set the User Area first click the User Area - Start Block submenu line. The setting dialog will pop

up:
a28aa
Edit | Min. Valus | Max Value| Default | All Detault |
MHame Walue Dezcription
Device Parameters
= Access Mode Access Mode
Inwvalid Block (IE] Management | Skip IB Inwvalid Block Management
Spare Area Usage Do Mot Use Spare Area Usage
Guard Solid Area Dizable Uszing Special Area Without Invalid Blocks Inside
Tolerant Yerify Featurs Dizable Toleration the specified numbers of sinagle-bit errars in the specified frame size in Werification
Invalid Block Indication Optionz | IB Indication Value: 00 | Invalid Elock Indication Y alue
Access Mode Parameters
User Area - Mumber of Blocks | 4000 f;lu.m‘l-s-er of Blocks in User Area
Solid Area - Start Block 1] | Skart Block of Area without Invalid Blocks _
Solid Area - Numnber of Blocks ! Gt Uszy nyes - Seipi Blocl (0, A0Y75) %]
RBA Area - Start Block 4040 v =
RBA Area - Humber of Blocks 14 Tope new valle:
ECLC Frame Size [bytes] 512 12]
Acceptable number of enors 4 [% =

Type the value and click OK. Then click the User Area - Number of Blocks submenu line and enter the
number of blocks into the pop-up dialog; then click OK to complete the User Area settings.

5.4.2.2.2 Solid Area
The Solid Area's boundaries are set by individual setting a pair of the following parameters:

Solid Area - Start Block - the first memory block of the memory area free of invalid blocks.
Solid Area - Number of Blocks - the number of blocks in the Solid Area.

To set the Solid Area first click the Solid Area - Start Block submenu line. The setting dialog will pop
up:

© 2015 Phyton, Inc. Microsystems and Development Tools

180

ChipProg Device Programmers

Access Mode Parameters
Iszer rea - Start Block a Start Block of User furea
User Area - Number of Blocks 4000 | Mumber of Blacks inUserArea

‘Solid rea - Number of Blacks |1 | Number of Elocks in rea withaut Ivvalid Blacks

RB& Area - Start Block 4040 Cos S Sl -
B frea - Nurber of Blocks 14 St Sulltl Sz - S Blusi (UL 2U58) %]
ECC Frame Size [bytes] | 512 et i
Acceptable number of ermors 4

5 E
oo 3.00%

Hiztary

Type the value and click OK. Then click the Solid Area - Number of Blocks submenu line and enter
the number of blocks into the pop-up dialog; then click OK to complete the Solid Area settings.

5.4.2.2.3 Reserved Block Area

The Reserved Block Area (RBA) boundaries are set by individual setting a pair of the following
parameters:

RBA Area - Start Block - the first memory block of the RBA.
RBA Area - Number of Blocks - the number of blocks in the RBA.

To set the RBA first click the RBA - Start Block submenu line. The setting dialog will pop up:

; Sq!ic_l .-’-fuea 2 N_umla,ar gf Blocks 1 . . Nlumbel_ef F.\:IECBS in .-’-‘u_eg u_\lith_out Irwalid Blocks

! Hé.ﬁAlea ﬁurﬁi:er l:-f Blocks | 1:1 . Number Sf Ellnck;s Jﬁéserve—c.l Elllock-;rea

i ECC Frame Size [bytes) 12 Frame Size for Talerant Verification

- Aoceptable number of erars 4 T e , - 5 =
. G [UE Az - St Blusle (U, 4054 3

e 300 Type new walue:

4050 [+

Histary

Type the offset value and click OK. Then click the RBA Area - Number of Blocks submenu line and
enter the number of blocks into the pop-up dialog; then click OK to complete the RBA settings.

5.4.2.2.4 ECC Frame size

This parameter of the Tolerant Verify Feature mode defines a size of the memory array where you
allow to hawe errors. To set a parameter click the ECC Frame size submenu line. Then specify the
parameter in bytes and click OK to complete the setting.

5.4.2.2.5 Acceptable number of errors

This parameter, associated with the Tolerant Verify Feature mode, defines an acceptable number of
single bit errors in the the memory array defined by the ECC frame size. To set the parameter click the
Acceptable number of errors submenu line. Then enter the number and click OK to complete the
setting.

© 2015 Phyton, Inc. Microsystems and Development Tools

Operating with Programmers 181

5.5 Multi- and Gang-programming

NOTE: All the statements below refer only to the ChipProg device programmer control via the
ChipProgUSB user interface and not in the remote mode via the Application Control
Interface.

ChipProg programmers can be launched in two programming modes:

¢ Single-programming mode, than means programming one device at a time by means of one
ChipProg programmer.

e Multi-programming or Gang-programming mode that means concurrent programming of multiple
devices at a time by:
-- either a multiple single site programmers of one type connected in one programming cluster driven
from one computer;
-- or a special 4-site ChipProg-G41 gang programmer.

The Multi-programming mode differs from the Single-programming mode in the following items:

1. Only the same type of programmers can be used in this mode - either ChipProg-40 or ChipProg-48
or ChipProg-481 or ChipProg-ISP programmers;

2. Only the same type of the device may be selected for every single programmer connected in one
programming cluster;

3. Only the same set of buffers can be opened for every single programmer connected in one
programming cluster;

4. Only the AutoProgramming function can be executed by the ChipProgUSB in this mode. There is
however one exception - ChipProg-G41 gang programmers can be combined with ChipProg-481
tools;

5. The Program Manager tabs and dialogs are very different.

The Multi-programming mode is intended for small- and middle-volume manufacturing. The
programmers in the Multi-programming mode work concurrently, e.g. you can start programming on
one site, insert a new device into a second socket, start the programming, insert a new device into a
third socket, start the programming, remowve the first programmed device, etc.. An ability to linearly
increase the programming system productivity by adding a new ChipProg programmer gives you
flexibility and save money.

In terms of the control there is no difference whether the ChipProgUSB controls a ChipProg-G41 gang
programmer or the program drives a cluster of multiple single ChipProg-40 or ChipProg-48 or ChipProg-
ISG programmers connected to one PC. To launch ChipProgUSB program in the Multi-programming
mode it should be invoked either by using the ChipProgUSB-GANG shortcut in the ChipProgUSB
folder or from the command line with the key /GANG.

The first dialog that appears when you started the ChipProgUSB-GANG shortcut (for the case when
only two programmers forms a two-site programming cluster):

© 2015 Phyton, Inc. Microsystems and Development Tools

182 ChipProg Device Programmers
|| specity Ste rmbers ag
Prezs the button on a programmer that you want to aszign to the
zite number 1._.
Bzzigned Sites
Site Mumber(z] Serial Murber Drescription
1 Mot azzigned Programmer
2 Mot azzigned Programmer
[x Cancel and exit
Now you should press the Start button on the programmer to which you would like to assign the site #1.
Then the ChipProgUSB will prompt to assign the site #2 to another programmer (in case there are more
than two programmers in the programming cluster), etc. After assigning numbers to the programmers
you will get the Program Manager window that differs from the same window that you get when you
work with one programmer.
55.1 The Program Manager Window

The Program Manager window is the major control object on the screen from which an operator
controls the ChipProg . While some windows can be closed in a process of programming this one is
supposed to be always open and visible. The window appearance differs from the same Program
Manager window that you get when you work with one programmer.

The window includes three tabs, opening three groups of settings and status indicators:

The Project Manager tab

The Options tab
The Statistics tab

The Project Manager and Options tabs look differently and enable different settings for the ChipProg
programmers working in the single-programming and multi-programming modes. These tabs are
identical for the ChipProg-G41 gang programmer and for the ChipProg-481, ChipProg-48, ChipProg-40
and ChipProg-ISP programmers when they are configured to work in the multi-programming mode.

© 2015 Phyton, Inc. Microsystems and Development Tools

Operating with Programmers 183

5.5.1.1 The Program Manager tab

Since the only AutoProgramming is available in the multi-programming mode this tab serves for manual
AutoProgramming initiation, displaying the site statisticsand information messages generated by the

ChipProgUSB program.

Program Manager

EFIEE)E]

Program Manager | Options | Statistics |

[% Execute || % Execute I

(Mo statuz Mo status
| Total: O Total: O
{Goad: 0 Goad: 0
{Bad: 0 |[Bad: 0O
1 2 |
Ready

5.5.1.2 The Options tab

The tab serves for setting all programming parameters and options for multi-programming mode.

Element of dialog

Description

The field Buffer displays the active buffer to which the programming

Buffer:
operations (functions) will be applied. A full list of open buffers is
available here via the drop-down menu.

Addresses Here you can set the addresses for the buffer and the target device

to which the programming functions will be applied.

Device start:

The veryfirstaddress in the target device's physical memory which will
be programmed.

Device end:

The verylastaddress in the target device's physical memory which will
be programmed.

Buffer start:

The veryfirstaddress in the buffer memory from which the data will be
written to the target device.

Split Data

The group of radio buttons in the Split data field allows to program 8-
bit memory devices to be used in the microprocessor systems with
the 16- and 32-bit address and data buses. To do this the buffer
content should be properly prepared to split one memory file into

© 2015 Phyton, Inc. Microsystems and Development Tools

184 ChipProg Device Programmers

several smaller files.

Options:

If this box is checked then AutoProgramming will start immediately
after the ChipProg programmer has detected that the device is in the
programming socket.

Device-Auto-Detect

Check device ID By default this option is always on and the ChipProg always verifies
the target device identifier given by the device manufacturer. If the box
is unchecked the program will skip the device ID checking.

Insert test If this box is checked the ChipProgUSB will test whether each of the
device leads is reliably squeezed by the programming socket contact.
If some contact is bad a current operation will be blocked.

Reverse bytes order If this box is checked the ChipProgUSB will sweep the byte order in
the 16-bit word while it executes the Read, Program and Verify
operations. This option does not affect the data in the ChipProg
buffers, they remain the same after the file loading.

If this box is checked the ChipProgUSB will always check if the target
device is blank before programming it.

Blank check before program

If this box is checked the ChipProgUSB will always verify the device

Verify after program i)
content right after it has been programmed.

If this box is checked the ChipProgUSB will always verify the device

Verify after read))
content right after it has been read out.

5.5.1.3 The Statistics tab

This tab opens the field displaying the programming session statistical results for each programming site
- Total number of devices that were programmed during the session, what was the yield (Good) and
how many devices hawe failed (Bad).

© 2015 Phyton, Inc. Microsystems and Development Tools

Operating with Programmers 185

Program Manager

| Pragrann Manager-il Elptin:nn;[Statistics—|

| Site# Total
I 0

2 |
AL 0

_Remaining

| Good Bad
0 0
0 0
0 0

Element of dialog

Description

Clear statistics

This button resets the statistics..

Device Programming
Countdown

Normally the Total counter increments after each Auto
Programming; the, Good and Bad counters also count up. The
ChipProgUSB reverses the counters to decrement their content (to
count down).

Enable countdown

If the box is checked the ChipProgUSB will count the number of the
programmed devices down.

Display message when
countdown value reaches
zero

If the box is checked the ChipProgUSB will issue a warning when
the counter Total is zeroed.

Reset counters when
countdown value reaches
Zero

If the box is checked the ChipProgUSB will reset all the counters
when the counter Total is zeroed.

Count only successfully
programmed devices

If the box is checked the ChipProgUSB will count only the
successfully programmed (Good). All other statistics will be
ignored.

Set initial countdown
value

Clicking on the button opens the box for entering a new Total
number that then will be decremented after each Auto

Programming.

© 2015 Phyton, Inc. Microsystems and Development Tools

186 ChipProg Device Programmers

5.6 In-System Programming

The ChipProg programmers generate all the signals necessary for programming devices installed in
the user's equipment (in-system). In order to program devices in-system the programmers connect to
the target via special adapters. When a device to be programmed is chosen, the ChipProgUSB
software displays a part number of the appropriate cable-adapter in the Device Information window.
The adapters.chm file includes wiring diagrams for all cable-adapters, that allows use of the adapters
made by customers themselves.

General requirements for connecting ChipProg programmers to the target system

Connections 1. Connections must be done in accordance to the adapter's wiring
diagram published in the adapters.chm file.

2. The target system should not shunt or overload the logical signals
generated by the programmer.

3. Some IPS algorithms require generating logical signals with the woltage
levels of 10 to 15V exceeding normal wltages used in electronic
systems (3 to 5V). The target system should be tolerant to applying
such "high wltages”.

Powering There are two alternative options for powering the targets:

1. The target gets power from the ChipProg. This is possible only if
the target does not consume too much energy. The current supplied
from the programmer may not exceed 80 mA, a capacity of the target
power circuitry should not exceed 50 uF.

2. The target gets power from a built-in or external power supply.
In this case the power output from the ChipProg should not be
connected with the target. The target system should be tolerant to
applying logical signals with the wltage levels exceeding the wltages
on the target.

NOTE! It is strictly prohibited to power the target from both the
programmer and built-in or external power supply simultaneously.

Electrical Max current load for the logical signals - 5 mA.
characteristics of the
ChipProg signals Max current load for the Vcc line - 80 mA.

Max current load for the Vpp line - 80 mA.

NOTE! Always carefully check connecting your ChipProg programmer to the target. Wrong
connecting may, and probably will cause destruction of the programmer's and/or the target
system's hardware.

© 2015 Phyton, Inc. Microsystems and Development Tools

Operating with Programmers 187

Most embedded microcontrollers have different algorithms for the ISP procedure. See the following
topics regarding the ISP for popular microcontrollers:

Specifics of the in-system programming of the Microchip PICmicro

Specifics of the in-system programming of the Atmel AVR microcontrollers

Specifics of the in-system programming of the Atmel 8051 microcontrollers

6 References

6.1 Errors Messages

6.1.1 Error Load/ Save File

5005 "Error reading file"

5004 "CRC mismatch, loading terminated”

5003 "Invalid .HEX file format"

5043 "Address out of range”

5078 "End address should be greater than start address"
5151 "Invalid file format"

5007 "Error writing file"

6899 "Cannotload file '%s": buffer #%u does not exist"
6900 "Cannotload file '%s": sub-level #%u does not exist"

7019 "Unable to open project file: '%s"\n\nAfter start, the programmer attempts to load the most recent project.
This error means that the project file does not exist on disk."

6.1.2 Error Addresses

5189 "Device start address (0x%LX) is too large.\nMax. address is 0x%LX."
5190 "Device end address (0x%LX) is too large.\nMax. address is 0x%LX."
5191 "Buffer start address is too large"

4024 “"Address %s is out of range (%s...%s)"

© 2015 Phyton, Inc. Microsystems and Development Tools

188 ChipProg Device Programmers

4106 "File formatdoes not allow addresses larger than OXFFFFFFFF"
4019 "Address in device: 0x%08X, Address in buffer: 0x%08X\n"
6626 "Buffer startaddress must be even”

6627 "Device startaddress must be even"

6628 "Buffer end address must be odd"

8002 "Buffer named '%s' already exists. Please choose another name for the buffer."

6.1.3 Error sizes

6372 "Buffer size is too small for selected split data option”

6495 "Requested buffer size (%lu) is too large”

6441 "Size offile is greater than buffer size:\nAddr = %08IX, length = %u"
6431 "Source block does not fitinto destination sub-level”

6859 "File size is %u bytes thatis less than header size (%u bytes), loading terminated. Probably, you have
specified an invalid file format."

4107 "Cannotallocate %Lu MBytes for the buffer, maximal buffer size is %Lu MBytes"

5192 "Invalid number: '%s™

6.1.4 Error command-line option

5329 "/%s command-line option: Device name required"
5330 "/%s command-line option: Missing file name"
5331 "/%s command-line option: Missing file format tag"
5332 "/%s command-line option: Invalid file format tag"
5333 "Command line: unable to determine the file format"
5334 "/%s command-line option: Invalid address value"

4104 "Command-line option /lignored because /A option is not specified"”

6.1.5 Error Programming option

6409 "Invalid programming function or menu name:\n'%s"™
6410 "Invalid programming option name '%s™

6902 "Invalid '%s' programming option value string: '%s

© 2015 Phyton, Inc. Microsystems and Development Tools

References 189

6411 "Programming option '%s' cannot be changed"

6412 "Programming option string is too long.\nMax. length is %u."

6854 "Programming option '%s" has type of '%s". Use '%s()' script function to get the value of this option."
5188 "Value %.2fis out of range of %.2f...%.2f for programming option '%s™

6561 "Value %ld is out of range of %ld...%Ild for programming option '%s™

4001 “"Notall of the saved auto-programming functions were restored. Check the auto-programming functions
list."

6.1.6 Error DLL

6499 "Cannot find bit resource with id 0x%Xin DLL:\n'%s"
6500 "Error handling bit resource with id 0xX%Xin DLL:\n'%s™

6502 "Unable to find device '%s'in DLL:\n'%s™

6.1.7 Error USB

4015 "USB device driver error 0x%04Xin '%s'\n\nCannot recover from this error, exting.\n\nPlease check if
the programmer power is on. If yes, disconnect the USB cable from computer and connectit again, then restart
the %s shell."

4016 "All sites reported USB device driver error.\n\nCannot recover from this error, exiting.\n\nPlease check if
the programmer(s) power is on. If yes, disconnect the USB cable from computer and connectit again, then
restart the %s shell.”

4017 "The following site(s):\n\n%s\n\nreported USB device driver error.\n\nThese site(s) will be removed from

the gang programming process.\n\nPlease check if the programmer(s) power is on. If yes, disconnect the USB
cable from computer and connectit again, then restart the %s shell."

6.1.8 Error programmer hardware

6546 "Source area does not fitinto destination address space"

4005 “"Attemptto read memory beyond buffer end: Addr = %s, len = %u bytes"

6988 "Unable to establish connection with programmer hardware. Please check if:\n\n"

4006 “Attached programmers have duplicate serial number '%s"™

4010 "This programmer with serial number '%s' has been already assigned the site number = %u”

4011 "This gang programmer with serial number '%s' has been already assigned the site numbers = %u..%
u"

4013 "The programmers attached are of different types and cannot be used for gang mode.\n\nExiting."

© 2015 Phyton, Inc. Microsystems and Development Tools

"%s reported hardware error 0x%X, error group 0x%X. If problem persists, please contact Phyton."

6527 "Internal errorA\nCORE() for %s %s returned NULL.\nPlease contact your %s distributor."

4002 "The '%s' configuration option has been setto an illegal state due to the data read from file. Setting this

"The 'View only option is on; editing disabled. Click the 'View' button on toolbar to enable editing.”

190 ChipProg Device Programmers
4014 "ExecFunction() does not work in Gang mode"
4020
4000 "The attached programmer with id = %u is not supported"
4102 "Device programming countdown value is zero%s"
6.1.9 Errorinternal
4025 “Internal Error: Unable to allocate %u bytes for the buffer. Please contact Phyton."
6.1.10 Error configquration
6503 "No programmer configuration files found (prog.ini)"
5325 "The device type '%s %s' stored in configuration *
"or choosen from script file function 'SetDevice()' is not supported by %s.\n"
"The device '%s %s' will be selected.\n"
"Use 'Configure / Select device' to choose the device "
"you need to operate on."
option to its default state ('%s")."
6.1.11 Error device
5326 "Device selection error"
4018 "Device '%s'is not supported by the %s. Please choose another device."
6.1.12 Error check box
6852 "Error in check box option specification string: '=' expected"”
6853 "Cannot find check box option string '%s"
6.1.13 Error mix
5195 " Number of repetitions cannot be zero"
5206
6501 "No power-on tests defined in:\n'%s"™
6903 "%s'is a sub-menu name, not a function name"

© 2015 Phyton, Inc. Microsystems and Development Tools

References 191

6401 "No more occurences"
6387 "Invalid fill string"
5172 "Checksum = %08IX"

5311 "No more mismatches"

6.1.14 Warning

5338 "Warning: JEDEC file has no file CRC"
5339 "Warning: JEDEC file has invalid CRC"
6933 "Warning: no ‘file end' record in file"

6845 "Attention! The %s %s device must be inserted into the programmer's socket shifted by %d row(s)
relative to the standard position as shown in the Device Information window."

6846 "Attention! Insert device into socket shifted by %d row(s) as shown on the picture.”

6.2 Expressions

Expressions in the program are the mathematical constructions for calculating results with the use of one
or more operands. It supports various operations on expressions. The following operands are used:

e numbers
e example of expressions

When a number is required, you may use an expression; <%CM%> will accept the value of the expression.
For example, when using the Modify command in the Buffer window, you can enter the new value in the
form of a number or arithmetic expression.

Interpreting the expression result
The expression resultis interpreted in accordance with the contextin which itis used.

In the dialog box, when an address is required, the program tries to interpret the expression’s value as the
address. If you enter a variable name, the result of the expression will be the variable’s address but not the
value of the variable.

If the dialog expects a number to be entered, the expression’s value will be interpreted as a number (for
example, the Modify Memory dialog box of the Buffer Dump window). If you enter a variable name there,
then the result will be the value of the variable, but notits address.

Nonetheless, you can follow the default rules:

If you need to use the variable’s value, where an address is expected, then you can write something like
var + 0. Inthis case, the variable’s value will be used in the expression.

If you need to use the variable address, applythe & (address) operation, thatis, &ar .

6.2.1 Operations with Expressions

The program supports all arithmetic and logical operations valid for the C language, as well as pointer

© 2015 Phyton, Inc. Microsystems and Development Tools

192

ChipProg Device Programmers

and address operations:

Designation
()
[]

&
(type)

(sizeof)

<<

>>

Description
Brackets (higher priority)

Array component selector

Structure component or union selector

Selection of a structure component or a union addressed with a pointer

Logical negation

Bitwise inversion
Bitwise sign change
Returns address
Access by address

Explicit type conversion

(returns size of operand, in bytes)

Multiplication

Division

Modulus operator (produces the remainder of an integer division)

Addition
Subtraction
Left shift

Right shift

Less than

Less than or equal to
Greater than

Greater than or equal to
Equal to

Not equal to

Bitwise AND

Bitwise XOR

Bitwise OR

© 2015 Phyton, Inc. Microsystems and Development Tools

References 193

&& Logical AND
| Logical OR

= Assignment

The types of operands are converted in accordance with the ANSI standard.
The results of logical operations are 0 (false) or 1 (true).

Allowed type conversions:
e Operands can be converted to simple types (char, int, ... float).
* Pointers can be converted to simple types (char *, int*, ... float *) and to structures or unions.
® The word "struct" is not necessarily (MyStruct *).

6.2.2 Numbers

By default, numbers are treated as decimals. Integers should fitinto 32 bits; floating point numbers should
fitinto the single precision format (32 bits).

The following formats are supported:
1) Decimal integer.
Example: 126889
2) Decimal floating point.
Examples: 365. 678;2. 12e- 9
3) Hexadecimal.
<%CM%> understands numbers in C format and assembly format.
Examples: 0xF6D7; OF6D7H; OXFFFF1111
4) Binary.
Binary numbers must end with 'B".
Examples:011101B;111111111111111000011B
5) Symbol (ASCII).
Examples:'a' ;' ab' ;' $BY8' . .

6.2.3 Examples of Expressions

Examples of expresions

#test#i + #Htest#j << 2
(unsigned char)#test#i + 2
sizeof(##array) > 200

© 2015 Phyton, Inc. Microsystems and Development Tools

194 ChipProg Device Programmers

main

i +j<<2/:CW0x1200
(unsigned char)i + 2
sizeof(array) > 200
(@a==b&&a<=4)||a>"3
sptr -> Memberl -> a]i]

P

*((char *)ptr)

6.3 Script Language

The program ChipProgUSB can execute so-called script files in a way similar to how DOS executes the
batch files.

The main objective of scriptfiles is to automate usage of the emulator. Using script files makes it
possible to load programs, set up breakpoints, start program execution, manipulate windows and
perform any actions available to you in automatic (batch) mode. Itis also possible to display various
messages in the Console window or other special windows, to create user's custom menus, etc. There
is the option of displaying any graphical data in special windows.

The scriptlanguage is similar to C: almost all C constructions are supported, except for structures,
conjunctives and pointers. However, there are some differences. There are also many built-in functions
available, such as printf(), sin() and strcpy().

The extension of script source file is .CMD.
Simple example of a script file
How to write a script file
How to start a script file
How to debug a script file
Description of Script Language
Script Language Built-in Functions
Script Language Built-in Variables
Difference Between the Script Language and the C Language
Alphabetical List of Script Language Built-in Functions and Variables

6.3.1 Simple example

This example shows how to load a file and automatically program it and display the result.

#include <system.h>
#include <mprog.h>

void main()

© 2015 Phyton, Inc. Microsystems and Development Tools

References 195

{

LoadProgram (“test.hex’, F_HEX, SubLevel(0, 0)); /l'load file "test.hex'thatis an Intel HEX
file I
to buffer O, sub-level O

InsertTest = TRUE; /I settesting of chip presence to "on"

if (ExecFunction("Auto Programming”) == EF_OK) /I perform an automatic programming

{

if (ExecFunction("Verify', SubLewvel(0, 0), 10) != EF_OK) I verify 10 times
{
printf("Verify failed: %s", LastErrorMessage); /I display error message if verify failed
return; /l terminate script
}
printf("\Verify ok."); /I display Ok result
}
else
printf("Programming failed: %s", LastErrorMessage); /I display error message
}

6.3.2 Description

The language used for writing the scriptfiles is similar to the C language. If you are familiar with the C

language, you can skip this chapter and switch to reading about the differences between the script
language and the C language.

This manual contains just a few examples of programming in the scriptlanguage. To find more
examples, refer to books on the C language.

General Syntax of Script Language

Basic Data Types

Data byte order

Operations and Expressions

Operators

Functions

Descriptions

Directives of the Script File Language Preprocessor
Predefined Symbols in the Script File Compilation

6.3.3 Built-in Functions

The scriptfile system provides you with a large set of built-in functions intended for work with lines, files,
for mathematical calculations, and access to the processor resources. The system.h file contains
descriptions of these built-in functions. You should include the system.h file in the script file source text
with the #include directive:

#i ncl ude <system h>

You can use these built-in functions in the same way you use any function that you have defined.

Buffer access functions

Device programming control functions
Mathematical Functions

© 2015 Phyton, Inc. Microsystems and Development Tools

196

ChipProg Device Programmers

6.34

String Operation Functions

Character Operation Functions
Functions for File and Directory Operation

Stream File Functions

Formatted Input-Output Functions
Script File Manipulation Functions

Text Editor Functions
Control Functions

Windows Operation Functions and Other System Functions

Graphical Output Functions

I/O Stream Window Operation Functions

Event Wait Functions
Other Various Functions

Note. To get help on a function or variable, while editing the script source with the <% CM%> built-in
editor, point that function/variable name with the cursor and hit Alt+F1.

Built-in Variables

You can access scriptlanguage built-in variables in the same way as regular global variables. However,
some built-in variables are accessible only for reading, and in case of attempt to write to such variable.

The built-in variables are declared in the system.h header file.

Programming variables:
InsertTest
ReverseBytesOrder
BlankCheck
VerifyAfterProgram
VerifyAfterRead
ChipStartAddr
ChipEndAddr
BufferStartAddr
LastErrorMessage
DialogOnError

Text editor built-in variables:

InsertMode
CaseSensitive
WholeWords
RegularExpressions
BlockCol1l
BlockCol2
BlockLinel
BlockLine2
BlockStatus
CurLine

CurCol
LastFoundString

Miscellaneous variables:

© 2015 Phyton, Inc. Microsystems and Development Tools

References 197

WorkFieldWidth
WorkFieldHeight
AppINamel[]
DesktopName[]
SystemDir[]

errno

_fmode
MainWindowHandle
NumWindows
WindowHandles[]
SelectedString[]
LastMessageint
LastMessagelong

6.3.5 Difference between the Script and the C Languages

The scriptfiles are written in a C-type language and you should not expectitto meet standards. Many
features are not supported because they are not necessary and complication of the language can cause
compiler errors (the script file language compiler is not a simple thing).

- Pointers are not directly supported. But arrays are supported, therefore a pointer can always be
built from an array and element number. Note that, for example, string operation functions, such as
strcpy, receive a string and a byte number (index) as parameters, which form the pointer. In function
declarations, indexis equal to zero by default.

- Pointers to functions are not supported. If necessary, a table call can always be replaced with the
switch operator.

- Multidimensional arrays are not supported. If itis necessary, you can write a couple of functions,
such as:

int GetEl ement(int array[], int indexl, int index2);
void SetElenent(int array[], int indexl, int index2, int value);

- Structures (and unions) are not supported. In fact, you can always do without structures. Structures
may be required for APl Windows and user DLLs operations, but as a rule only experienced
programmers should do it, such as those who know how to reach structure elements. As a tip, there are
functions, such as memcpy, which receive a void "pointer").

- Enumerated types (enum) are not supported #define.

- Preprocessor macros, such as #define half(x) (x / 2), are not supported. The same operations can

be done with functions.

Conditional operators such as x =y == 2? 3 : 4;, are not supported; the operator "comma" outside

© 2015 Phyton, Inc. Microsystems and Development Tools

198 ChipProg Device Programmers
variable declaration is not supported. For example,
int i =0, j =1; is supported, but
for (i =0, j =1; ...) is not supported.

- User functions with a variable amount of parameters are not supported. However, there are many
system functions, such as printf, with a variable number of parameters.

- Declaration of user function parameters such as void array[] is not supported. The system
functions such as memcpy, have such parameters.

- Logical expressions are always fully computed. Itis veryimportant to remember it, as a situation
like
char array[10];
if (i <10 & array[i] !'= 0)

array[i] = 1;

will cause an error at the execution stage, ifi is greater than 9, because the expression of arrayfi] will be

computed. In a standard compiler such an expression is not computed, because the condition of i > 10

would cancel any further processing of the expression.

- Constant expressions are always computed during execution. For example, int i = 10 * 22 will be
computed not during compilation, but during execution.

- The const keyword is absent.

- Static variables cannot be declared inside functions.

But

- Variables can be declared anywhere, not justin front of the first executed operator. For example:
void main()

{

d obal Var = 0;

int i = 1; /Il will be K as in C++
}

- Nested comments are allowed.

- Expressions like array ="1234" are allowed.

- Default parameter values in declared functions, as in C++, are allowed. For example, void func
(char array[],int index = 0);. Expressions can also serve as default values, for example void func(char
array[], int index = funcl() + 1);.

- Expressions in global variable initializers are allowed. For example:
float table[] = { sin(0), sin(0.1) };
voi d mai n()

{
}
6.3.6 Script Language Built-in Functions and Variables

The list below includes all the names of the script language built-in functions and variables:

AllProgOptionsDefault
API

ActivateWindow
AddButton

AddWatch
AppIName[]

© 2015 Phyton, Inc. Microsystems and Development Tools

References 199

BackSpace
BlankCheck
BlockBegin
BlockColl
BlockCol2
BlockCopy
BlockDelete
BlockEnd
BlockFastCopy
BlockLinel
BlockLine2
BlockMove
BlockOff
BlockPaste
BlockStatus
BufferStartAddr
CaseSensitive
CheckSum
ChipEndAddr
ChipStartAddr
ClearWindow
CloseProject
CloseWindow
Cr

CurChar
CurCaol
CurLine
Curcuit
DelChar
DelLine
DesktopName][]
DialogOnError
DisplayText
DisplayTextF
Down

Ellipse

Eof

Eol
ExecFunction
ExecMenu
ExecScript
ExitProgram
Expr
FileChanged
FillRect
FindWindow
FirstWord

© 2015 Phyton, Inc. Microsystems and Development Tools

200

ChipProg Device Programmers

FloatExpr
ForwardTill
ForwardTilINot
FrameRect
FreeLibrary
GetByte

GetDword
GetFileName
GetLine

GetMark
GetMemory
GetProgOptionBits
GetProgOptionFloat
GetProgOptionList
GetProgOptionLong
GetProgOptionString
GetScriptFileName
GetWindowHeight
GetWindowWidth
GetWord

GotoXY

InsertMode
InsertTest

Inspect

InvertRect
LastChar
LastErrorMessage
LastEvent
LastEventInt{1...4}
LastFoundString
LastMessagelnt
LastMessagelLong
LastString

Left

LineTo
LoadDesktop
LoadLibrary
LoadOptions
LoadProgram
LoadProject
MainWindowHandle
MaxAddr
MessageBox
MessageBoxEx
MinAddr

MoveTo
MoveWindow

© 2015 Phyton, Inc. Microsystems and Development Tools

References 201

NumWindows
OpenEditorWindow
OpenStreamWindow
OpenUserWindow
OpenWindow
Polyline
ProgOptionDefault
Rectangle
RedrawScreen
RegularExpressions
ReloadProgram
RemowveButtons
ReverseBytesOrder
Right

SaweData
SaveDesktop
SaweFile
SaveOptions
Search
SearchReplace
SelectBrush
SelectFont
SelectPen
SelectedString[]
SetBkColor
SetBkMode
SetByte

SetCaption
SetDevice
SetDWord
SetFileName
SetMark
SetMemory
SetPixel
SetProgOption
SetTextColor
SetToolbar
SetUpdateMode
SetWindowFont
SetWindowSize
SetWindowSizeT
SetWord
SystemDir(]
TerminateAllScripts
TerminateScript
Text

Tof

© 2015 Phyton, Inc. Microsystems and Development Tools

202

ChipProg Device Programmers

Up
UpdateWindow
Verify AfterProgram
VerifyAfterRead
WaitEprTrue
WaitGetMessage
WaitSendMessage
WaitWindowEvent
WholeWords
WindowHandles]]
WindowHotkey
WordLeft
WordRight
WorkFieldHeight
WorkFieldWidth
_GetWord
_ff_attrib

_ff_date

ff name
_ff_size

_ff time

_fmode

_fullpath

_printf

abs

acos

asin

atan

atof

atoi

ceil

chdir

chsize

clearerr

close

cos

creat

creatnew
creattemp

delay

difftime

dup

dup2

eof

errno

exec

exit

© 2015 Phyton, Inc. Microsystems and Development Tools

References 203

exp
fabs
fclose
fdopen
feof
ferror
flush
fgetc
fgets
filelength
fileno
findfirst
findnext
floor
fmod
fnmerge
fnsplit
fopen
fprintf
fputc
fputs
fread
freopen
frexp
fscanf
fseek
ftell
fwrite
getc
getcurdir
getcwd
getdate
getdfree
getdisk()
getenv
getftime
gettime
getw
inport
inportb
isalnum
isalpha
isascii
isatty
iscntrl
isdigit
isgraph

© 2015 Phyton, Inc. Microsystems and Development Tools

204

ChipProg Device Programmers

islower
isprint
ispunct
isspace
isupper
isxdigit
itoa

lock
locking
log

log10
Iseek
Itoa
memccpy
memchr
memcmp
memcpy
memicmp
memmove
memset
mkdir
movmem
mprintf
open
outport
outportb
peek
peekb
poke
pokeb
pow
pow10
printf
pscanf
putc
putenv
putw

rand
random
randomize
read
rename
rewind
rmdir
scanf
searchpath
setdisk

© 2015 Phyton, Inc. Microsystems and Development Tools

References

setftime
setmem
setmode
sin
sprintf
sqrt
srand
sscanf
stpcpy
strcat
strchr
strcmp
strcmpi
strcpy
strcspn
stricmp
strlen
striwr
strncat
strncmp
strncmpi
strncpy
strnicmp
strnset
strpbrk
strrchr
strrev
strset
strspn
strstr
strtol
strtoul
strupr
tan

tanh

tell
toascii
tolower
toupper
ultoa
unlink
unlock
wgetchar
wgethex
wgetstring
wprintf
write

205

© 2015 Phyton, Inc. Microsystems and Development Tools

206

ChipProg Device Programmers

6.4

6.4.1

6.4.2

In-System Programming for different devices

NOTE! Always carefully check connecting your ChipProg programmer to the target. Wrong
connecting may and probably will cause destruction of the programmer's and/or the target
system’'s hardware.

Most embedded microcontrollers have different algorithms for the ISP procedure. See the following
topics regarding the ISP for popular microcontrollers:

Specific of the in-system programming of the Microchip PICmicro
Specific of the in-system programming of the Atmel AVR microcontrollers
Specific of the in-system programming of the Atmel 8051 microcontrollers

Specific of programming PICmicro

1. Most of the PIC microcontrollers produced by Microchip Technology Corporation require a special
HV ISP Programming Mode (High-Voltage in-System Programming Mode). In this mode a relatively
high woltage of 13V is applied to the MCLR device pin. The user's equipment to be programmed
should be designed in the way tolerating a 13V signal to be applied to the MCLR device pin - in
particular this pin should not be connected to the Vcc pin of the device.

2. Though the PIC microcontrollers are capable to work in a certain range on the Vcc wltage (the
range varies from 2 to 5V for some PICmicro derivatives) the device being under programming must
have the 5V wltage lewvel applied to the Vcc device pin. If in the working mode the target
microcontroller works under the Vcc lower than 5V and the target cannot tolerate applying the 5V
woltage to the Vcc pin, then, if the user needs to program the PICmicro device in-system, it is
necessary to change the schematic to have an ability to connect 5V to the Vcc pin while the target
is under the programming. However, \erification of the correct programming can be conducted under
the woltages allowed by the manufacturer (Vcc min - Vcc max).

Specific of programming AVR microcontrollers

Microcontrollers of the Atmel AVR series can be programmed in-system being under a normal Vcc
wltage. Practically all AVR microcontrollers require clocking while they are under in-system
programming. ChipProg programmers are capable to send clocks to the target microcontroller but
sometimes the systems based on AVR microcontrollers have their own built-in clock generators.

1. If the system has its own built-in clock generator then make sure that the clock line of the
ChipProg cable adapter is not connected to the clock input pin of the target microcontroller,
otherwise it may destroy either the target or programmer hardware. What you need in this case is
just to enter a value of the generator clock frequency in the Algorithm Parameters > Oscillator
Frequency field in the Device and Algorithm Parameters Editor window (see on the picture
below). By default the Oscillator Frequency value is 2.5 MHz. To change it double click the
Oscillator Frequency line displayed in blue color and enter the Fclk value into the popped up
dialog. If the actual clock frequency differs from the value set in the window the correct programming
will be impossible.

© 2015 Phyton, Inc. Microsystems and Development Tools

References
Cevice and Algorithm Parameters Editar 2308
Edit | i | Al Detault |
M ame: Yalue Desclnbtiu:un
Device Parameters [Set all values to defaults|
Lu:u:kl:ults Lock I.:ui.ts
Calibration Bute 0k Calibration value far the intermal BC Dacillz
Algonthm Farameters
- Algarithm "Im-Spztem Programming'’ | Programming algorithm
Ozcillator Frequency | 2600 kHz Ozcillator frequency
Yoo B.00% FPower supply voltage
Device nl Formatior 2808
Socket Scheme | Naotes
Device: Atmel | ATmegal28L [ISP Mode]
Adapter[z]: In-Syztem: AE-ISP-U1
Socket =cheme

207

2. If the target system does not have its own built-in clock generator then, the target AVR device
needs to get clocks from the ChipProg built-in generator; thus the clock output wire of the cable-
adapter should be connected to an appropriate clock input pin of the target device. By default the
Fclk= 2.5 MHz. It can be set in the range of the Fclk allowed for a particular selected target AVR
device in the Algorithm Parameters > Oscillator Frequency field in the Device and Algorithm

Parameters Editor window (see the picture abowe).

6.4.3 Specific of programming Atmel 8051 microcontrollers

Microcontrollers of the Atmel 8051 family (AT89 series) can be programmed in-system being under a
normal Vcc wltage. Practically all these microcontrollers require clocking while they are under in-

system programming. ChipProg programmers are capable to send clocks to the target microcontroller

but sometimes the systems based on the Atmel 8051 microcontrollers have their own built-in clock

generators.

1. If the system has its own built-in clock generator then make sure that the clock line of the

ChipProg cable adapter is not connected to the clock input pin of the target microcontroller,

otherwise it may destroy either the target or programmer hardware.

2. If the target system does not have its own built-in clock generator then, the target device
needs to get clocks from the ChipProg built-in generator; thus the clock output wire of the cable-
adapter should be connected to an appropriate clock input pin of the target device.

© 2015 Phyton, Inc. Microsystems and Development Tools

208 ChipProg Device Programmers

Index
A -

About
software version 65
Acceptable number of errors
Tolerant Verify Feature 180
Access mode
Device and Algorithm Parameters 176
Device Parameters 176
Access Mode Parameters 178
ACl 160, 163
DLL 123
External application 123
External control 123
ACl examples 158
ACI functions
ACI structures 125
ACI structures
ACl functions 140
Adapters 83
Adapters attachment
list 85
Adapters Connections List 83
Add Watch
dialog 121
Algorithm Parameters 71

Alphabetical List of Script Language Built-in Functions

and Variables 198
Angstrem SAV 81
Application Control Interface
ACl 123
ACl functions 123
ACl header 123
ACI structures 123
DLL 123
External application 123
External control 123
Programming automation 123
Application Control Interface exaples 158
ASCIlHex 81
Auto Programming 67
Auto-detect
device in a socket 166
Auto-detect device in a socket 166

Automatic Word Completion
AutoWatches

pane 119
AutoWatches pane 119
AVR microcontroller 206

B -

Backspace unindents 59
Bad Block Management 176
Bad block map
Bad blocks 173
Invalid blocks 173
Bad blocks 172, 174
Binary image 81
Block Operations 116
Blocks
copying / moving 116
line blocks 116

115

non-persistent blocks 116

persistent 59
persistent blocks 116
standard blocks 116

vertical 59
vertical blocks 116
Buffer 10

Buffer Configuration
dialog 46

Buffer Dump

window 74
Buffers

dialog 45

memory allocation 45

_C-

Calculator

dialog 62

Check Blank 167
Checksum 50
ChipProg

main menu 39
ChipProg programmers 12
ChipProg-40 34

brief characteristics 22
bundle 21

hardware characteristics

23

© 2015 Phyton, Inc. Microsystems and Development Tools

Index 209

ChipProg-40 34

software characteristics 23
ChipProg-48 33

brief characteristics 20
bundle 19

hardware characteristics 20
software characteristics 20
ChipProg-481 32

brief characteristics 15, 17
bundle 14

hardware characteristics 15
software characteristics 15
ChipProg-G4

hardware characteristics 18
ChipProg-G41 17, 33

bundle 16

software characteristics 18
ChipProg-ISP 35

brief characteristics 26
bundle 24

hardware characteristics 27
software characteristics 27
CLl 11
Colors 56

tab 56
Command line 11, 160
Command Line Interface 11
Command Line Keys 92, 94
Command Line Mode 11
Command Line Options 94
Command Line Parameters 94
Commands

menu 62
Commands Menu 62
Condensed Mode 114
Condensed Mode Setup

dialog 114
Configurating Editor

dialog 59
Configuration 44

buffer 46

editor Options 44
environment 44
Configuration Files 41
Configuration Menu 44
Configure the device to be programmed 168
Configuring a Buffer

dialog 75

Confirm Replace

dialog 112
Console

window 86
Window Console 86
Contact Information 37

D -

Define Font 55
Define key 57
Definitions
adapter 9
buffer 9
memory buffer 9
sub-level 9
Description of Script Language 195
Detect
device in a socket 166
Device
set into a socket 166
Device and Algorithm Parameters
window 71
Device Information
window 83
Device Parameters 71
Device programmer ChipProg-481 14
Device serialization 48
Difference Between the Script Language and the C
Language 197
Discard device 48
Discard serial numbers 48
Display from address

dialog 78
Display from Line Number
dialog 116
Display Watches Options
dialog 120
DLL 160, 163
Drivers
UsB 31

Duplicate a device 170

“E -

ECC 173
ECC frame 180

© 2015 Phyton, Inc. Microsystems and Development Tools

210 ChipProg Device Programmers

Edit Information to be programmed 168
Edit Key Command
dialog 61
Editor Key Mapping
tab 61
Editor window 108
Environment
dialog 55
Erase 167
Error Checking and Correction 173, 180
Even byte 69
Examples of ACluse 158
Examples of Expressions 193
Expressions 191

_E -

File format 81
File Menu
oveniew 40
Fonts 55
tab 55

-G -

Gang 16

Gang machine 16
Gang programmer 16
General Editor

settings 59
Guard Solid Area 177
GUl 38

_H -

Help

menu 65

On-line 36

Highlight

multi-ine Comments 59
Highlight Active Tabs 58
Highlighting

Syntax 59, 115
History file 41

Holtek OTR 81

Hot Keys 57

How to Get On-line Help 36

How to start a script file 117
How to write a script file 107

I/O Stream
window 122
ICP 9
Insert DIP in socket 166
Install ChipProg 29
Install the ChipProg Software 29
Installing the USB Drivers 31
In-System programming 186, 206
Introduction 9
Invalid block
Array 172
Spare area 172
Invalid Block Indication
IB displaying 178
Invalid Block Management 176
Invalid block map 173
Invalid blocks
ECC 172
Error Checking and Correction 172
Resened Block Area method 172
Skip Block method 172

ISP
ISP HV Mode 9
ISP Mode 9
JEDEC 81

L -

LabVIEW 160, 163

List

Adapters connections 83
Load file

dialog 80

Load session 41
Load the file into the buffer 168
Log file 52

© 2015 Phyton, Inc. Microsystems and Development Tools

Index 211

NAND Flash programming
_ M _ Access mode 175
Device and Algorithm Parameters 175
Device Parameters 175
Numbers 193

Main menu
commands 39

Main menu bar 39

Mapping - O -

hot keys 57
Marking bad blocks 174 Odd byte 69
MCS-51 microcontroller 207 On-line Help 36
Memory Dump Window Setup On-the-Fly
dialog 76 On-the-Fly Command Line Options 98
Memory Blocks On-the-Fly Options 98
operations 78 On-the-Fly Control
Menu Example 103
Project 42 On-the-Fly Control utility 97
View 41 On-the-Fly utility return codes
Menu File 40 return codes 102
load file 40 Open Project 43
sawe file 40 dialog 43
Menu Help 65 Operations with Expressions 191
Menu Script 63 Operations with Memory Blocks 78
Message box Options
always display 58 dialog 53
Messages Options&split
tab 58 dialog 68, 183
Microchip PICmicro microcontroller 206 Owveniew
Miscellaneous Settings 58 User Interface 38
Modify Address
dialog 78 _ P _
Modify Memory
dialog 78

Packages/Adapters 45
Motorola S-record 81

o POF 81
Mulg_—FllleSealrlcg Results Preferances 53
1alog PRG 81

Multi-programming mode 181 Program a Device 167

Program Manager 66

- N - Auto Programming 66, 183
dialog 66, 183
NAND 170 Operation Progress 66, 183
NAND Flash 170 window 65, 182
Block 170 Programmer 9
Large page 170 ChipProg-40 34
NAND Flash architecture 170 ChipProg-48 33
Small page 170 ChipProg-481 32
NAND Flash memory ChipProg-G41 33
Programming NAND devices 170 ChipProg-ISP 35

© 2015 Phyton, Inc. Microsystems and Development Tools

212 ChipProg Device Programmers

Programmer 9 Regular Expressions
work with 166 search for 113
Programmers Remote control 92
ChipProgusB 12 Replace Text
Programmers ChipProg-40 21 dialog 111
Programmers ChipProg-48 19 Repository 43
Programmers ChipProg-481 14 Resened Block Area 172
Programmers ChipProg-G41 16 Resened Block Area Parameters
Programmers ChipProg-ISP 24 RBA 180
Programming RBA parameters 180
check blank 167 Resened Block Area 180
configure the device 168 Run ChipProg 11
duplicate a device 170
edit Information 168 _ S _
erase 167

load the file 168
program a Device 167
program functions 167
read a device 169
sawe the data 169

Sawe file from buffer
dialog 82
Sawe session 41
Sawe the data read out from a device 169
Script 105, 194

verify 169 menu 63
write In.formatlon into the Device 168 Script Files 105, 194
Programming adapters 83 dialog 105

Programming automation 123
Programming characteristics

AVR microcontroller 206

MCS-51 microcontroller 207

PICmicro microcontroller 206
Programming in target board 186, 206

Script Language Built-in Functions 195
Script Language Built-in Variables 196
Script source window

open 105
Search for Regular Expressions 113
; Search for Text
Project 91 dialog 110

Pro!eCt Me.nu 42 Search mask 45
Project options 42, 91 Select color 56

_dlalog 4_2 Select device 45
Project Repository dialog 45
_dlalog 43 Serial number 48
Projects 91

Serialization 49
Serialization, Checksum, Log file

- Q - dialog 47
166

Set device into a socket

Quick Start 29 Set/Retrieve Bookmark
Quick Watch dialog 114
enabled 58 Signature String 51
Quick Watch Function 116 Simple example of a script file 194
Skip Block method
_ R _ Bad blocks 172
Invalid blocks 172

Skipping invalid blocks 172
Solid Area 177

Read a Device 169

© 2015 Phyton, Inc. Microsystems and Development Tools

Index 213

Solid Area Parameters oveniew 38
Number of Blocks 179
Start Block 179

Sounds 53 - V B

Spare Area Usage

Veri rogrammin 169
SpareArea 176 fy prog g

View 41

Split data 69 View Menu 41
Standard/Extended Intel HEX 81
Statistics
dialog 70, 184 - W -
Sub-layer
additional 47 Watches
main 46 window 119
Sub-Layer 'Code’ 46 Watches Window
Sub-layer 'ID location' 47 add Watch 121
Support 36 display Watches Options 120
Syntax Highlighting 115 Window
System Requirements 11 menu 64
Menu Window 64
Window Device Information 83
- T - Window Dump Setup
dialog 76
Tab Size 59

Window Editor 108

Window I/O Stream 122

Window Program Manager 65, 182
Window User 121

Window Watches 119

Windows 65

Word Completion 115

Work with Programmer 166

Write Information into the Device 168

Technical Support 36
Terminology 9
Terminology and Definitions 9
Text Edit 109
Tolerant Verify Feature

Tolerant Verify 178
Toolbar

tab 57

U -

Undo Count 59
USB Drivers 31
User

window 121
User area
Number of blocks 179
Start block 179
User Block Area

Bad blocks 172
Block reservoir 172
Invalid blocks 172
RBA 172

UBA 172

User Interface 38

© 2015 Phyton, Inc. Microsystems and Development Tools

Back Cover

	Introduction
	Terms and Definitions
	System Requirements

	ChipProg Family Brief Description
	ChipProg-481
	Major features
	Hardware characteristics
	Software features

	ChipProg-G41
	Major features
	Hardware characteristics
	Software features

	ChipProg-48
	Major features
	Hardware characteristics
	Software features

	ChipProg-40
	Major features
	Hardware characteristics
	Software features

	ChipProg-ISP
	Major features
	Hardware characteristics
	Software features

	Quick Start
	Installing the ChipProgUSB Software
	Installing the USB Drivers
	Hardware installation
	ChipProg-481
	ChipProg-G41
	ChipProg-48
	ChipProg-40
	ChipProg-ISP

	Getting Assistance
	On-line Help
	Technical Support
	Contact Information

	ChipProg Control Options
	Graphical User Interface
	User Interface Overview
	Toolbars
	Menus
	The File Menu
	Configuration Files

	The View Menu
	The Project Menu
	The Project Options Dialog
	The Open Project Dialog
	Project Repository

	The Configure Menu
	The Select Device dialog
	The Buffers dialog
	The Buffer Configuration dialog
	Main Buffer Layer
	Buffer Layers

	The Serialization, Checksum and Log dialog
	General settings
	Device Serialization
	Checksum
	Signature string
	Custom Shadow Areas
	Overlaping data specified in shadow areas
	Log file

	The Preferences dialog
	The Environment dialog
	Fonts
	Colors
	Mapping Hot Keys
	Toolbar
	Messages
	Miscellaneous Settings

	Configurating Editor Dialog
	General Editor Settings
	The Editor Key Mapping
	The Edit Key Command Dialog

	The Commands Menu
	Calculator

	The Script Menu
	The Window Menu
	The Help Menu

	Windows
	The Program Manager Window
	The Program Manager tab
	Auto Programming

	The Options tab
	Split data

	The Statistics tab

	The Device and Algorithm Parameters window
	Buffer Dump Window
	The 'Configuring a Buffer' dialog
	The 'Buffer Setup' dialog
	The 'Display from address' dialog
	The 'Modify Data' dialog
	The 'Memory Blocks' dialog
	The 'Load File' dialog
	File Formats

	The 'Save File' dialog

	The Device Information window
	Phyton programming adapters
	Adapters for in-system programming

	The Console Window
	Windows for Scripts

	Simplified User Interface
	Settings of Simplified User Interface
	Operations with Simplified User Interface

	Operations with Projects
	Command Line Control
	Command line options

	On-the-Fly Control
	On-the-Fly command line options
	On-the-Fly utility return codes
	On-the-Fly Control example

	Script Files
	The Script Files Dialog
	How to create and edit script files
	The Editor Window
	Text Edit
	The Search for Text Dialog
	The Replace Text Dialog
	The Confirm Replace Dialog
	The Multi-File Search Results Dialog
	Search for Regular Expressions
	The Set/Retrieve Bookmark Dialogs
	Condensed Mode
	The Condensed Mode Setup Dialog
	Automatic Word Completion
	Syntax Highlighting
	The Display from Line Number Dialog
	The Quick Watch Function
	Block Operations

	How to start and debug script files
	The AutoWatches Pane
	The Watches Window
	The Display Watches Options Dialog
	The Add Watch Dialog

	The User Window
	The I/O Stream Window

	Programming Automation via DLL
	Application Control Interface
	ACI Functions
	ACI_Launch
	ACI_Exit
	ACI_LoadConfigFile
	ACI_SaveConfigFile
	ACI_SetDevice
	ACI_GetDevice
	ACI_GetLayer
	ACI_CreateBuffer
	ACI_ReallocBuffer
	ACI_ReadLayer
	ACI_WriteLayer
	ACI_FillLayer
	ACI_GetProgrammingParams
	ACI_SetProgrammingParams
	ACI_GetProgOption
	ACI_SetProgOption
	ACI_AllProgOptionsDefault
	ACI_ExecFunction
	ACI_StartFunction
	ACI_GangStart
	ACI_GetStatus
	ACI_TerminateFunction
	ACI_GangTerminateFunction
	ACI_FileLoad
	ACI_FileSave
	ACI_SettingsDialog
	ACI_SelectDeviceDialog
	ACI_BuffersDialog
	ACI_LoadFileDialog
	ACI_SaveFileDialog
	ACI_SetConnection
	ACI_GetConnection

	ACI Structures
	ACI_Launch_Params
	ACI_Config_Params
	ACI_Device_Params
	ACI_Layer_Params
	ACI_Buffer_Params
	ACI_Memory_Params
	ACI_Programming_Params
	ACI_ProgOption_Params
	ACI_Function_Params
	ACI_GangTerminate_Params
	ACI_PStatus_Params
	ACI_File_Params
	ACI_GangStart_Params
	ACI_Connection_Params

	Examples of use

	Control from NI LabVIEW
	Command Line Control from LabVIEW
	Control from LabVIEW with DLL

	Operating with Programmers
	Inserting devices to a programming socket
	Auto-detecting the device
	Basic programming functions
	How to check if a device is blank
	How to erase a device
	How to program a device
	How to load a file into a buffer
	How to edit information before programming
	How to configure the chosen device
	How to write information into the device

	How to read a device
	How to verify programming
	How to save data on a disc
	How to duplicate a device

	Programming NAND Flash memory
	NAND Flash memory architectures
	Invalid blocks
	Managing invalid blocks
	Skipping invalid blocks
	Reserved Block Area
	Error Checking and Correction

	Invalid block map

	Marking invalid blocks

	Programming NAND Flash devices by ChipProg
	Access Mode
	Invalid Block Management
	Spare Area Usage
	Guard Solid Area
	Tolerant Verify Feature
	Invalid Block Indication Option

	Access Mode Parameters
	User Area
	Solid Area
	Reserved Block Area
	ECC Frame size
	Acceptable number of errors

	Multi- and Gang-programming
	The Program Manager Window
	The Program Manager tab
	The Options tab
	The Statistics tab

	In-System Programming

	References
	Errors Messages
	Error Load/ Save File
	Error Addresses
	Error sizes
	Error command-line option
	Error Programming option
	Error DLL
	Error USB
	Error programmer hardware
	Error internal
	Error confiquration
	Error device
	Error check box
	Error mix
	Warning

	Expressions
	Operations with Expressions
	Numbers
	Examples of Expressions

	Script Language
	Simple example
	Description
	Built-in Functions
	Built-in Variables
	Difference between the Script and the C Languages
	Script Language Built-in Functions and Variables

	In-System Programming for different devices
	Specific of programming PICmicro
	Specific of programming AVR microcontrollers
	Specific of programming Atmel 8051 microcontrollers

