Data Sheet

Total Power: 80-110 W Input Voltage: 100-240Vac 127-357 Vdc \# of Outputs: Single, quad

SPECIAL FEATURES

- $7.0 \times 4.25 \times 1.8$ inch package
- Medical, dental and laboratory applications
- Overvoltage and short circuit protection
- 110 W with 20 CFM
- UL, cUL and VDE approvals
- EN60601-1 and UL2601 medical approvals
- Available RoHS compliant
- 2 years warranty

SAFETY

- EN60950-1/IEC60950-1
- EN60601-1
- UL60601-1/CSA C22.2 No. 601-1 File No. E182560
 \section*{NFS110 Medical Series
 \section*{NFS110 Medical Series
 Single and quad output}

Electrical Specifications

Output		
Voltage adjustability:	+5.1 V o/p on multi's 5.1 V single output 12 V single output 15 V single output 24 V single output	$\pm 3.0 \%$
	LL to HL, FL All outputs on all units	$12-14 \mathrm{~V}$,
	$15-18 \mathrm{~V}$	
$24-30 \mathrm{~V}$		

All specifications are typical at nominal input, full load at $25^{\circ} \mathrm{C}$ unless otherwise stated

EMC Charateristics

Conducted emissions:	EN55022, FCC part 15	Level A
Radiated emissions:	EN55022, FCC part 15	Level A
ESD air:	EN61000-4-2, level 3	Perf. criteria 1
ESD contact:	EN61000-4-2, level 4	Perf. criteria 1
Surge:	EN61000-4-3, level 3	Perf. criteria 1
Fast transients:	EN61000-4-4, level 3	Perf. criteria 1
Radiated immunity:	EN61000-4-5, level 3	Perf. criteria 2
Conducted immunity:	EN61000-4-6, level 3	Perf. criteria 2

General Specifications

Hold-up time:	110 Vac @ 80 W 110 Vac@110 W 230 Vac @ 80 W 230 Vac @ 110 W	35 ms 17 ms 140 ms 100 ms
Efficiency:	Multiple outputs +5.1 V single 12 V and 15 V singles 24 V single	70\% typical 70\% typical 72\% typical 75% typical
Isolation voltage:	Input/output Input/chassis	$\begin{aligned} & 4000 \mathrm{Vac} \\ & 1500 \mathrm{Vac} \end{aligned}$
Approvals and standards: (see note 12)		VDE0750, IEC60601, IEC1010, UL60601, CSA C22.2 No. 125
Weight:	Singles Multiple outputs	$\begin{aligned} & 550 \mathrm{~g}(19.4 \mathrm{oz}) \\ & 600 \mathrm{~g}(21.2 \mathrm{oz}) \end{aligned}$
MTBF (@25 ${ }^{\circ} \mathrm{C}$)	MIL-HDBK-217E	125,000 hours min.

Environmental Specifications

Thermal performance:	Operating, see curve	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
(See notes 9, 10)	Non-operating	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ amb. convection cooled	80 W
	$+50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, amb. convection cooled	Derate $2 \mathrm{~W} /{ }^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}, 20 \mathrm{CFM}$ forced air	110 W
	$+50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 20 \mathrm{CFM}$ forced air	Derate $2.75 \mathrm{~W} /{ }^{\circ} \mathrm{C}$
Relative humidity:	Peak, $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, max. 60 seconds	110 W
Altitude:	Non-condensing	5% to $95 \% \mathrm{RH}$
	Operating	10,000 feet max.
	Non-operating	40,000 feet max.
Vibration (See Note 11):	$5-500 \mathrm{~Hz}$	2.4 G rms peak

Ordering Information

Output Voltage	Output Currents			Ripple ${ }^{(4)}$	Total Regulation ${ }^{(5)}$	Model Numbers ${ }^{(13,14, F)}$
	Max ${ }^{(1)}$	Peak ${ }^{(2)}$	Fan ${ }^{(3)}$			
+5.1 V	8 A	20 A	10 A	50 mV	$\pm 2.0 \%$	NFS110-7901PJ
+12 V	4.5 A	9 A	5 A	120 mV	$\pm 3.0 \%$	
-12 V	0.5 A	1.5 A	1 A	120 mV	$\pm 3.0 \%$	
-5 V	0.5 A	1.5 A	1 A	50 mV	$\pm 3.0 \%$	
$+5.1 \mathrm{~V}\left(\mathrm{I}_{\mathrm{A}}\right)$	8 A	20 A	10 A	50 mV	+ 2.0\%	NFS110-7902PJ
$+24 \mathrm{~V}\left(\mathrm{I}_{\mathrm{B}}\right)^{(6)}$	3.5 A	4.5 A	4.5 A	240 mV	+ $10 /-5.0 \%$	
+12 V	4.5 A	9 A	5 A	120 mV	$\pm 3.0 \%$	
-12 V	0.5 A	1.5 A	1 A	120 mV	$\pm 3.0 \%$	
12 V	7 A	9 A	9 A	120 mV	$\pm 2.0 \%$	NFS110-7912 ${ }^{(7,8)}$
15 V	5 A	7.3 A	7.3 A	150 mV	$\pm 2.0 \%$	NFS110-7915J ${ }^{(7,8)}$
24 V	3.5 A	4.5 A	4.5 A	240 mV	$\pm 2.0 \%$	NFS110-7924 ${ }^{(7,8)}$

Transient Response

NFS110-7901PJ	$+5.1 \mathrm{~V}(7.5-10 \mathrm{~A})$	150 mV peak, 1 ms recovery
	$+12 \mathrm{~V}(2.5-5 \mathrm{~A})$	100 mV peak, 0.5 ms recovery
	$-12 \mathrm{~V}(0.5-1 \mathrm{~A})$	100 mV peak, 0.5 ms recovery
	$-5 \mathrm{~V}(0.5-1 \mathrm{~A})$	100 mV peak, 0.5 ms recovery
NFS110-7902PJ	$+5.1 \mathrm{~V}(7.5-10 \mathrm{~A})$	150 mV peak, 1 ms recovery
	$+12 \mathrm{~V}(2.5-5 \mathrm{~A})$	100 mV peak, 0.5 ms recovery
	$-12 \mathrm{~V}(0.5-1 \mathrm{~A})$	100 mV peak, 0.5 ms recovery
	$24 \mathrm{~V}(1.5-3 \mathrm{~A})$	300 mV peak, 1 ms recovery
	NFS110-7905J	$+5.1 \mathrm{~V}(10-20 \mathrm{~A})$
NFS110-7912J	+12 mV peak, 1 ms recovery	
NFS110-7915J	$+15 \mathrm{~V}(3.65-7.3 \mathrm{~A})$	360 mV peak, 1 ms recovery
NFS110-7924J	+24 VV peak, 1 ms recovery	

Notes

1. Convection cooled, 80 W maximum.
2. Peak outputs lasting less than 60 seconds with duty cycle less than 10%. Total peak power must not exceed 110 W .
3. Forced air, 20 CFM at 1 atmosphere, 110 W maximum.
4. Figure is peak-to-peak. Output ripple is measured across a 50 MHz bandwidth using a 12 inch twisted pair terminated with a $47 \mu \mathrm{~F}$ capacitor.
5. Total regulation is defined at the static output regulation at $25^{\circ} \mathrm{C}$, including initial tolerance, line voltage within stated limits and output voltages adjusted to their factory settings. Also for NFS110-7902PJ, for 24 V output stated regulation $I_{A} / I_{B}^{2} 5$. This output will maintain $\pm 5.0 \%$ regulation if $\mathrm{I}_{\mathrm{A}}^{2} 5 \mathrm{~A}$, where $\mathrm{I}_{\mathrm{A}}=+5.1 \mathrm{~V}$ output current and $\mathrm{I}_{\mathrm{B}}=+24 \mathrm{~V}$ output current.
6. Single output models have floating outputs which may be referenced as either positive or negative. Higher voltage supplies, may be adjusted over a wide output voltage range, as long as the total output power does not exceed 80 Watts (natural convection) or 110 Watts (forced air).
7. Power fail detect not available on single output models.
8. Derating curve is application specific for ambient temperatures $>50^{\circ} \mathrm{C}$, for optimum reliability no part of the heatsink should exceed $90^{\circ} \mathrm{C}$ and no semiconductor case temperature should exceed $100^{\circ} \mathrm{C}$.
9. Caution: Allow a minimum of 1 second after disconnecting the power when making thermal measurements.
10. The user should read the PSU installation instructions in conjunction with the relevant national safety regulations in order to ensure compliance.
11. Three orthogonal axes, random vibration, 10 minute test for each axis.
12. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.
13. The ' J ' suffix indicates that these parts are Pb -free (RoHS 6/6) compliant. TSE RoHS 5/6 (non Pb-free) compliant versions may be available on special request, please contact your local sales representative for details.
14. NOTICE: Some models do not support all options. Please contact your local Artesyn Embedded Technologies representative or use the on-line model number search tool at www.artesyn.com/power to find a suitable alternative.

AC (J1) mating connector
Molex 09-50-3051 or Molex 09-91-0500 mating connector with 2478 or equivalent crimp terminals.

DC (J2) mating connector
Molex 09-50-3131 or Molex 09-91-1300 mating connector with 2478 or equivalent crimp terminals.

Mechanical Notes

A Metallic or non-metallic stand-offs (maximum diameter 5.4 mm) can be used in all four mounting holes without effecting safety approval.
B The ground pad of the mounting hole near J 1 , allows system grounding through a metal stand-off to the system chassis.
C The heat sink is grounded, and allows system grounding by mechanical connection to the system chassis.
D The supply must be mechanically supported using the PCB mounting holes and may be additionally supported by the heatsink mounting holes.
E It is always advisable to attach the power supply heat sink to another thermal dissipator (such as a chassis or finned heatsink etc). The resulting decrease in heat sink mounted component temperatures will improve power supply lifetime.
F A standard L-bracket and cover is available for mounting which contains all screws, connectors and necessary mounting hardware. The kit is available, order part number "NFS110CJ".

Power fail detect signal (Note 8)
$50 \mathrm{~ms} \leq \mathrm{T} 1 \leq 200 \mathrm{~ms}$
T2 will vary with line and load
T3 $\geq 3 \mathrm{~ms}$
Pout: 110 W
PFD output is an open collector which will sink $\leq 40 \mathrm{~mA}$ in the low state.

Pin Connections	-7901PJ	-7902PJ	SINGLES		
J1	AC Ground	AC Ground	AC Ground		
Pin 1	AC Neutral	AC Neutral	AC Neutral		
Pin 2	AC Line	AC Line	AC Line		
Pin 3					
J2	+5.1 V	+5.1 V	$\mathrm{~V}_{\text {out }}$		
Pin 1	+5.1 V	+5.1 V	$\mathrm{~V}_{\text {out }}$		
Pin 2	+5.1 V	+5.1 V	$\mathrm{~V}_{\text {out }}$		
Pin 3	Return	Return	Return		
Pin 4	Return	Return	Return		
Pin 5	Return	Return	Return		
Pin 6	Return	Return	Return		
Pin 7	+12 V	+12 V	$\mathrm{~V}_{\text {out }}$		
Pin 8	+12 V	+12 V	$\mathrm{~V}_{\text {out }}$		
Pin 9	PFD	PFD	N / C		
Pin 10	-12 V	-12 V	$\mathrm{~N} / \mathrm{C}$		
Pin 11					
Pin 12	-5 V	Removed for Key			
Pin 13	+24 V	$\mathrm{~N} / \mathrm{C}$			

$N / C=$ no connection.

WORLDWIDE OFFICES

Americas

2900 S.Diablo Way
Tempe, AZ 85282
USA
+18884127832

Europe (UK)

Waterfront Business Park
Merry Hill, Dudley
West Midlands, DY5 1LX
United Kingdom
+44 (0) 1384842211

Asia (HK)

14/F, Lu Plaza
2 Wing Yip Street
Kwun Tong, Kowloon
Hong Kong
+852 21763333

For more information: www.artesyn.com/power
For support: productsupport.ep@artesyn.com

