
DAVE Embedded Systems www.dave.eu info@dave.eu

Axel Embedded Linux Kit (XELK)

Quick Start Guide

Solo / Dual / Quad ARM Cortex-A9
CPU Module

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

<Page intentionally left blank>

February, 2016 2/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

Table of Contents
1 Preface...6

1.1 About this manual...6
1.2 Copyrights/Trademarks...6
1.3 Standards..6
1.4 Disclaimers...6
1.5 Warranty..6
1.6 Technical Support...7
1.7 Related documents...8
1.8 Conventions, Abbreviations, Acronyms..9

2 Introduction..12
2.1 AXEL SOM..12
2.2 XELK...14

2.2.1 Kit Contents...16
2.2.2 XELK Release Notes...16

2.2.2.1 Version 1.0.0..16
2.2.2.2 Version 1.1.0..17
2.2.2.3 Version 1.2.0..17
2.2.2.4 Version 2.0.0..17
2.2.2.5 Version 2.1.0..17
2.2.2.6 Version 2.2.0..17
2.2.2.7 Releases history...18
2.2.2.8 Release type..19
2.2.2.9 Known limitations...20

3 XELK Quick Start...21
3.1 Unboxing...21
3.2 Hardware setup...22
3.3 First boot...22
3.4 Selecting boot device..23

3.4.1 Boot from SD (XELK default)..23
3.4.2 Boot from SPI NOR flash..23

3.5 DVDK installation..24
3.5.1 DVDK features...24
3.5.2 MicroSD contents..25
3.5.3 Extracting the .OVA file..26
3.5.4 Importing the virtual machine..26
3.5.5 Launching the virtual machine...28
3.5.6 Updating the XELK distributions..30

4 Develoment tools...31
4.1 Embedded Linux...31
4.2 Software components...32

4.2.1 Toolchain..32

February, 2016 3/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

4.2.2 Bootloader...32
4.2.3 Kernel..33

4.2.3.1 Linux Device Tree..33
4.2.4 Target root file system...34
4.2.5 Yocto..34
4.2.6 ConfigID...35

4.2.6.1 ConfigID advantage...36
4.2.6.2 UniqueID advantage..36

4.2.7 Software components git repositories...36
4.2.8 Updating the XELK git repositories...36

4.2.8.1 RSA key generation...37
4.2.8.2 Checking the ssh connection to the git repositories..38

4.3 Development environment..39
4.3.1 Introduction..39
4.3.2 The build system...40
4.3.3 Overview of the installed components..40
4.3.4 Setting up the server environment..42

4.3.4.1 TFTP Server...42
4.3.4.2 NFS Server...42
4.3.4.3 Pre-built toolchain..43
4.3.4.4 Pre-built root file system...43

4.4 Building the software components with Yocto..45
4.4.1 Prerequisites..45
4.4.2 Initializing the build environment...46
4.4.3 Build the Yocto image..46

4.5 Building the software components outside Yocto...47
4.5.1 Build/configure U-Boot..47
4.5.2 Build/configure Linux kernel..48
4.5.3 Build a custom application...49

4.6 Programming the flash memory...51
4.6.1 Flashing binary images in NOR/NAND flash...51

4.6.1.1 U-Boot..51
4.6.1.2 Linux kernel..51
4.6.1.3 Device tree...51

4.6.2 Flashing root file systems..51
4.7 Customizing the splash screen...53

4.7.1 Customizing the splash screen...53
4.7.2 Additional resources..53
4.7.3 Splash image in NOR SPI flash..53

4.7.3.1 U-Boot variables...53
4.7.3.2 Commands...54

4.7.4 Splash image in NAND flash...54
4.7.4.1 U-Boot variables...54

February, 2016 4/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

4.7.4.2 Commands...54
4.8 Building Qt applications..55

4.8.1 Launching Qt Creator..55
4.8.2 Building a QtQuick “Hello World!”..56

5 Frequently Asked Questions..60
5.1 Q: Where can I found AXEL SOM information?...60
5.2 Q: I've received the XELK package. How am I supposed to start working with it?......60
5.3 Q: How can I update the XELK version?..61
5.4 Q: How can I update the git repositories provided with XELK 2.0.0 to XELK 2.2.0
version?...61
5.5 Q: How can I work with the XYZ peripheral/interface?...61
5.6 Q: How can I configure the AXEL system to boot from network?................................62
5.7 Q: Can you suggest some guidelines for the carrier board design?............................63
5.8 Q: How can I change the CPU clock frequency?...63
5.9 Q: How can I limit the number of active CPU cores?...64
5.10 Q: How can I modify the IP address of the board?...64

6 Appendices...66
6.1 U-Boot startup messages...66
6.2 U-Boot default environment..66
6.3 Boot messages on the serial console...68

February, 2016 5/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

1 Preface
1.1 About this manual

This manual describes the AXEL Embedded Linux Kit
(XELK) and serves as a quick guide for start working with
the development kit.

1.2 Copyrights/Trademarks
Ethernet® is a registered trademark of XEROX Corporation.

All other products and trademarks mentioned in this
manual are property of their respective owners.

All rights reserved. Specifications may change any time
without notification.

1.3 Standards
DAVE Embedded Systems is certified to ISO 9001
standards.

1.4 Disclaimers
DAVE Embedded Systems does not assume any
responsibility for availability, supply and support related to
all products mentioned in this manual that are not strictly
part of the AXEL CPU modules, the AXELEVB-Lite carrier
board and the Dacu carrier board.

AXEL CPU Modules are not designed for use in life support
appliances, devices, or systems where malfunctioning of
these products can reasonably be expected to result in
personal injury. DAVE Embedded Systems customers who
are using or selling these products for use in such
applications do so at their own risk and agree to fully
indemnify DAVE Embedded Systems for any damage
resulting from such improper use or sale.

1.5 Warranty
AXEL SOMs, AXELEVB-Lite and Dacu are guaranteed

February, 2016 6/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

against defects in material and workmanship for the
warranty period from the shipment date. During the
warranty period, DAVE Embedded Systems will at its
discretion decide to repair or replace defective products.
Within the warranty period, the repair of products is free of
charge provided that warranty conditions are observed.

The warranty does not apply to defects resulting from
improper or inadequate maintenance or handling by the
customer, unauthorized modification or misuse, operation
outside of the product’s specifications or improper
installation or maintenance.

DAVE Embedded Systems will not be responsible for any
defects or damages to other products not supplied by DAVE
Embedded Systems that are caused by a faulty AXEL
module, AXELEVB-Lite or Dacu.

1.6 Technical Support
We are committed to making our products easy to use and
will help customers use our CPU modules in their systems.

Technical support is delivered through email for registered
kits owners. Support requests can be sent to
support-axel@dave.eu. Software upgrades are available for
download in the restricted download area of DAVE
Embedded Systems web site:
http://www.dave.eu/reserved-area. An account is required
to access this area.

Please refer to our Web site at
http://www.dave.eu/dave- cpu-module-imx6-axel.html for the
latest product documents, utilities, drivers, Product Change
Notices, Board Support Packages, Application Notes,
mechanical drawings and additional tools and software.

February, 2016 7/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

1.7 Related documents

Document Location

DAVE Embedded
Systems
Developers Wiki

http://wiki.dave.eu/index.php/Main_Pa
ge

i.MX6 Application
Processor
Reference Manual

http://cache.freescale.com/files/32bit/
doc/ref_manual/IMX6DQRM.pdf?
fpsp=1&WT_TYPE=Reference
%20Manuals&WT_VENDOR=FREESCA
LE&WT_FILE_FORMAT=pdf&WT_ASSET
=Documentation

Freescale I.MX
community
webiste

https://community.freescale.com/com
munity/imx

Freescale
L3.10.17-1.0.0
documentation
bundle

https://www.freescale.com/webapp/D
ownload?
colCode=L3.10.17_1.0.0_IMX6QDLS_B
UNDLE&appType=license&location=n
ull&WT_TYPE=Board%20Support
%20Packages&WT_VENDOR=FREESC
ALE&WT_FILE_FORMAT=gz&WT_ASSE
T=Downloads&fileExt=.gz&Parent_no
deId=1337637154535695831062&Pa
rent_pageType=product

AXEL main page
on DAVE
Embedded
Systems
Developers Wiki

http://wiki.dave.eu/index.php/Categor
y:Axel

AXEL Hardware
Manual

http://www.dave.eu/sites/default/files/
files/axel-hm.pdf

AXEL Software
Manual

http://wiki.dave.eu/index.php/Softwar
e_Manual_(Axel)

AXELEVB-Lite
page on DAVE
Embedded

http://wiki.dave.eu/index.php/AxelEVB
-Lite

February, 2016 8/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

Document Location

Systems
Developers Wiki

Dacu User's Guide Provided with kit documentation

Building
Embedded Linux
Systems By Karim
Yaghmour.

This book covers all matters involved
in developing software for embedded
systems. It is not a reference guide,
but it provides a complete and
exhaustive overview that helps the
developer save a lot of time in
searching for such information on the
Internet

Training and Docs
sections of Free
Electrons website.

Brief but still exhaustive overview of
the Linux and Embedded Linux world.

Tab. 1: Related documents

1.8 Conventions, Abbreviations, Acronyms

Abbreviation Definition

BTN Button

DVDK Dave Virtual Development Kit

EMAC Ethernet Media Access Controller

GPI General purpose input

GPIO General purpose input and output

GPO General purpose output

LTIB Linux Target Image Builder

OVA Open Virtualization Archive

PCB Printed circuit board

PMIC Power Management Integrated Circuit

PSU Power supply unit

RTC Real time clock

SOC System-on-chip

February, 2016 9/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

Abbreviation Definition

SOM System-on-module

WDT Watchdog

XELK AXEL Embedded Linux Kit

Tab. 2: Abbreviations and acronyms used in this manual

February, 2016 10/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

Revision History

Version Date Notes

1.0.0 November 2013 First official release

1.0.1 January 2014 Released with XELK 1.1.0
Minor fixes

1.0.2 May 2014 Added support for AXELLite SOM
Minor fixes

Released with XELK 1.2.0

1.0.3 November 2014 Released with XELK 2.0.0

1.0.4 April 2015 Released with XELK 2.1.0

1.0.5 February 2016 Minor fixes
Released with XELK 2.2.0

February, 2016 11/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

2 Introduction
2.1 AXEL SOM

AXEL is the new top-class
Solo/Dual/Quad core ARM
Cortex-A9 CPU module by
DAVE Embedded Systems,
based on the recent
Freescale i.MX6 application
processor.

Thanks to AXEL, customers
have the chance to save
time and resources by using
a compact solution that
permits to reach scalable performances that perfectly fits
the application requirements avoiding complexities on the

carrier board.

The use of this
processor enables
extensive
system-level
differentiation of
new applications in
many industry
fields, where
high-performance
and extremely
compact form factor
(85mm x 50mm) are
key factors. Smarter

system designs are made possible, following the trends in
functionalities and interfaces of the new, state-of-the-art
embedded products. AXEL offers great computational
power, thanks to the rich set of peripherals, the Scalable
ARM Cortex-A9 together with a large set of high-speed I/Os
(up to 5GHz).

AXEL enables designers to create smart products suitable

February, 2016 12/75

Fig. 2: AXEL-LITE – Solo / Dual /
Quad core ARM Cortex A9

Fig. 1: Axel Ultra CPU
module

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

for harsh mechanical and thermal environments, allowing
the development of high computing and reliable solutions.
Thanks to the tight integration between the ARM
Core-based processing system, designers are able to share
the application through the multi-core platform and/or to
divide the task on different cores in order to match with
specific application requirements (AMP makes possible the
creation of applications where RTOS and Linux work
together on different cores).Thanks to AXEL, customers are
going to save time and resources by using a powerful and
scalable compact solution, avoiding complexities on the
carrier PCB.

AXEL is designed and manufactured according to DAVE
Embedded Systems Ultra Line specifications, in order to
guarantee premium quality and technical value for
customers who require top performances and flexibility.
AXEL is suitable for high-end applications such as medical
instrumentation, advanced communication systems, critical
real-time operations and safety applications.

For further information, please refer to AXEL Hardware
Manual.

February, 2016 13/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

2.2 XELK
AXEL Embedded Linux Kit (XELK for short) provides all the
necessary components required to set up the developing
environment for:

● building the bootloader (U-Boot)

● building and running Linux operating system on
AXEL-based systems

● building Linux applications that will run on the target

The heart of AXEL SOM is Freescale i.MX6 Solo/Dual/Quad
core application processor. From a software point of view,
Freescale supports this processor family through so-called
Linux BSPs. The Linux BSP releases are published on a
regular basis and the release packages have a reference
code as L<Kernel_version>_<x.y.z> (eg: L3.10.17_1.0.3).
For more details please refer to:

● http://www.freescale.com/webapp/sps/site/prod_summ
ary.jsp?code=i.MX6Q&fpsp=1&tab=Design_Tools_Tab

● https://community.freescale.com/community/imx/conte
nt?
filterID=contentstatus[published]~category[imx6all]&
filterID=contentstatus[published]~objecttype~objectt
ype[document]

AXEL Embedded Linux Kit, in turn, is directly derived from
L<Kernel_version>_<x.y.z> BSP versions. Hence XELK
documentation often refers to L<Kernel_version>_<x.y.z>
resources.

DAVE Embedded Systems adds to the latest BSP from
Freescale the customization required to support the AXEL
platform. For this reason most of the documentation
provided by Freescale remains valid for the XELK
development kit. However, some customization is required,
in particular at bootloader and Linux kernel levels.

XELK 2.0.0 introduced support for the Yocto build system,
an open source collaboration project that provides
templates, tools and methods to help creating custom
Linux-based systems for embedded products. It is derived

February, 2016 14/75

https://community.freescale.com/community/imx/content%20?filterID=contentstatus[published]~category[imx6all]&filterID=contentstatus[published]~objecttype~objecttype[document]
https://community.freescale.com/community/imx/content%20?filterID=contentstatus[published]~category[imx6all]&filterID=contentstatus[published]~objecttype~objecttype[document]
https://community.freescale.com/community/imx/content%20?filterID=contentstatus[published]~category[imx6all]&filterID=contentstatus[published]~objecttype~objecttype[document]
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=i.MX6Q&fpsp=1&tab=Design_Tools_Tab
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=i.MX6Q&fpsp=1&tab=Design_Tools_Tab

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

from OpenEmbedded, but it provides a less steep learning
curve, a graphical interface for Bitbake and very good
documentation. DAVE Embedded Systems provides the
so-called recipes/meta-repositories required to build all the
XELK software components (bootloader, kernel and root file
system) with the Yocto build system. For further details,
please refer to https://wiki.yoctoproject.org/wiki/FAQ.

February, 2016 15/75

https://wiki.yoctoproject.org/wiki/FAQ

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

2.2.1 Kit Contents
The following table lists the XELK components:

Component Description

AXEL ULTRA or AXEL LITE SOM
CPU: Freescale i.MX6

AXELEVB-Lite Carrier board

DACU Carrier board

Ampire AM-800480STMQW
7” 800x480 LCD display
LVDS interface

AC/DC Single Output Wall Mount
adapter
Output: +12V – 2.0 A

MicroSDHC card with SD adapter
and USB adapter

2.2.2 XELK Release Notes

2.2.2.1 Version 1.0.0

● First official release

February, 2016 16/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

2.2.2.2 Version 1.1.0

● Minor update that adds support for more peripherals:
NAND, RTC, I²C, SPI

● Touch screen works properly

● CAN works @ 1Mbps

● The system can boot from SD

2.2.2.3 Version 1.2.0

● Added support for AXEL LITE SOMs

● Bug fixes and minor changes

2.2.2.4 Version 2.0.0

● Updated u-boot and kernel versions

● Bug fixes and minor changes

● Added support for Yocto 1.5

2.2.2.5 Version 2.1.0

● Updated u-boot and kernel versions

● Added ConfigID support
(http://wiki.dave.eu/index.php/ConfigID_and_UniqueI
D)

● Bug fixes and minor changes

2.2.2.6 Version 2.2.0

● Added splash screen support in U-Boot

● Updated u-boot and kernel versions

● Bug fixes and minor changes

February, 2016 17/75

http://wiki.dave.eu/index.php/ConfigID_and_UniqueID
http://wiki.dave.eu/index.php/ConfigID_and_UniqueID

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

2.2.2.7 Releases history

XELK Version

Release
number

1.0.0 1.1.0 1.2.0 2.0.0 2.1.0 2.2.0

Status Released Released Released Released Released Released

Release
date

November
2013

January 2014 May 2014 November
2014

April 2015 January 2016

Release
type

Major (see
2.2.2.8)

Maintenance
(see 2.2.2.8)

Maintenance
(see 2.2.2.8)

Major (see
2.2.2.8)

Maintenance
(see 2.2.2.8)

Maintenance
(see 2.2.2.8)

Release
notes

Version 1.0.0 Version 1.1.0 Version 1.2.0 Version 2.0.0 Version 2.1.0 Version 2.2.0

SOM PCB
version

AXEL Ultra:
CS030713

AXEL Ultra:
CS030713A

AXEL Ultra:
CS030713A
AXEL Lite:
CS335013A

AXEL Ultra:
CS030713A
AXEL Lite:
CS335013A

AXEL Ultra:
CS030713B
AXEL Lite:
CS335013B

AXEL Ultra:
CS030713B
AXEL Lite:
CS335013B

Supporte
d carrier
boards

AXELEVB-Lite
Dacu

AXELEVB-Lite
Dacu

AXELEVB-Lite
Dacu

AXELEVB-Lite
Dacu

AXELEVB-Lit
e
Dacu

AXELEVB-Lite
Dacu

U-Boot
version

2013.10-xelk
-1.0.0

2013.10-xelk
-1.1.0

2013.10-xelk
-1.2.0

2013.04-xelk
-2.0.0

2013.04-xelk
-2.1.0

2013.04-xelk
-2.2.0

Linux
version

3.0.35-xelk-1
.0.0

3.0.35-xelk-1
.1.0

3.0.35-xelk-1
.2.0

3.10.17-xelk-
2.0.0

3.10.17-xelk-
2.1.0

3.10.17-xelk-
2.2.0

Drivers SPI NOR
Flash (boot)
UART debug
(2-wire)
USB Host
USB OTG
SD/MMC1
CAN
Touch screen
controller
EMAC
SATA
HMDI
LVDS1

SPI NOR
Flash (boot)
UART debug
(2-wire)
USB Host
USB OTG
SD/MMC1
CAN
Touch screen
controller
EMAC
SATA
HMDI
LVDS1
NAND
RTC
I²C
SPI

SPI NOR
Flash (boot)
UART debug
(2-wire)
USB Host
USB OTG
SD/MMC1
CAN
Touch screen
controller
EMAC
SATA
HMDI
LVDS1
NAND
RTC
I²C
SPI

SPI NOR
Flash (boot)
UART debug
(2-wire)
USB Host
USB OTG
SD/MMC1
CAN
Touch screen
controller
EMAC
SATA
HMDI
LVDS1
NAND
RTC
I²C
SPI
Video Input
(MIPI)

SPI NOR
Flash (boot)
UART debug
(2-wire)
USB Host
USB OTG
SD/MMC1
CAN
Touch screen
controller
EMAC
SATA
HMDI
LVDS1
NAND
RTC
I²C
SPI
Video Input
(MIPI)

SPI NOR
Flash (boot)
UART debug
(2-wire)
USB Host
USB OTG
SD/MMC1
CAN
Touch screen
controller
EMAC
SATA
HMDI
LVDS1
NAND
RTC
I²C
SPI
Video Input
(MIPI)

February, 2016 18/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

XELK Version

PCIe
ConfigID

PCIe
ConfigID
Splash
screen

Freescale
BSP
version

L3.0.35-4.1.0 L3.0.35-4.1.0 L3.0.35-4.1.0 L3.10.17-1.0.
0

L3.10.17-1.0.
0

L3.10.17-1.0.
3

Graphic
Libraries

Qt 4.8 Qt 4.8 Qt 4.8 Qt 5.3.2 Qt 5.3.2 Qt 5.3.2

Build tool LTIB LTIB LTIB Yocto 1.5 Yocto 1.5 Yocto 1.5

2.2.2.8 Release type

XELK release type can be:

● Major, when substantial changes are applied to the
BSP (eg: major kernel version upgrades) or to the
development kit (eg: new features, build system
updates, ..). This usually means that a new DVDK is
created for the XELK release.

● Maintenance, when minor updates and bug fixes are
introduced. This usually means that the DVDK remains
the same provided with the previous major version,
and only an update of the source tree repositories
(and the tftp binaries) is required.

As an example, XELK 2.2.0 is a maintenance release, so it
provides the DVDK released with the 2.0.0 major release;
customers can easily upgrade to the 2.2.0 release by
updating the software components as described in Section
3.5.6.

February, 2016 19/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

2.2.2.9 Known limitations

The following table reports the known limitations of the
latest XELK version, which will be solved for the next
releases of the development kit:

Issue Description

USB OTG Verified in Host and Device modes

Reboot from software Rebooting the system from software (eg:
launching the reboot command from Linux user
space) can lead to a system lock. To solve it,
reset the board with the dedicated button (S10)

Ethernet 10 Mbps connections have not been tested

February, 2016 20/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

3 XELK Quick Start
This chapter describes how to quickly start working with
the XELK kit. The following paragraphs will guide you
through the setup and installation procedures.

3.1 Unboxing
Once you've received the kit, please open the box and check
the kit contents with the packing list included in the box,
using the table on chapter 2.2.1 as a reference. The
hardware components (SOM, carrier boards and display)
are pre-assembled, as shown in the picture below:

February, 2016 21/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

3.2 Hardware setup
This section describes how to quick start an AXEL system
composed of a AXEL SOM plugged into the AXELEVB-Lite
and then mounted on the DACU carrier board, provided
that it is programmed according to the XELK configuration.

The MicroSD provided with the XELK can be used to boot
the system, since it contains a bootable partition
(mmcblk0p1) and a root file system partition (mmcblk0p2).

1. insert the MicroSD card provided with the development
kit into the MicroSD slot

2. connect the 12Vcc power supply to JP2 on the DACU
board

3. (optional) connect a serial cable between the J251
connector on the DACU board and PC COM port
through a NULL-modem
(https://en.wikipedia.org/wiki/Null_modem) cable (not
provided)

4. (optional) start your favorite terminal software on PC;
communication parameters are:

Parameter Value

Baud rate 115200 bps

Data bits 8

Stop bits 1

Parity None

5. (optional) to connect the system to Ethernet LAN,
please plug cable on connector J6 connector of the
AXELEVB-Lite

The system is configured to boot automatically from the SD
card when powered up.

3.3 First boot
Once power has been applied, U-Boot bootloader will be

1 For the previous versions of the AXELEVB LITE hardware (PCB rel. CS151613), the serial console is
available on the J28 DB9 connector.

February, 2016 22/75

https://en.wikipedia.org/wiki/Null_modem

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

executed from the SPI NOR flash, and the debug messages
will be printed on the serial console. U-Boot automatically
runs the autoboot macro, that loads the kernel and
launches it with the options for mounting the root file
system from the mmcblk0p2 partition. At the end of the
boot process, a demo application is launched and you can
interact with the system using the touchscreen.

Moreover, the Linux shell is available on the serial console.
Lastly, both telnet and ssh services are available to connect
to the system through the network.

Please refer to Appendix 6.3 for an example of the boot
messages.

3.4 Selecting boot device
The boot device is the one used to load U-Boot and is
selected through S5-S9 dip switches configuration.

3.4.1 Boot from SD

Dip switch 1 2 3 4 5 6 7 8

S5 ON OFF ON ON ON ON OFF OFF

S6 OFF OFF ON ON OFF ON ON ON

S7 OFF OFF ON ON ON ON ON ON

S8 ON OFF ON ON OFF ON ON ON

S9 OFF OFF

3.4.2 Boot from SPI NOR flash (XELK default)

Dip switch 1 2 3 4 5 6 7 8

S5 ON ON OFF OFF ON ON OFF OFF

S6 OFF OFF ON ON OFF ON ON ON

S7 OFF OFF ON OFF OFF OFF ON OFF

S8 ON OFF ON ON OFF ON ON ON

S9 OFF OFF

February, 2016 23/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

3.5 DVDK installation
DAVE Embedded Systems Virtual Development Kit is a
virtual machine, based on Oracle VirtualBox that allows
developers to start using DAVE Embedded Systems
platform without wasting time in installing the development
environment. The Virtual Machine comes with all the
development tools and source code (pre-configured), and
requires only a minimal setup by the end user (usually only
to adapt network interface to the user environment).

DVDK can also be converted, easily, into a physical
environment, for example to increase speed on slower
machines. Please note that DVDK can be used also with
VMWare.

Please refer to DVDK page
(http://wiki.dave.eu/index.php/Category:DVDK) on DAVE
Embedded Systems Developer's Wiki for further
information.

3.5.1 DVDK features
● VirtualBox virtual machine (.OVA archive)

● Based on Lubuntu 12.04 LTS (64-bit version)

● Pre-installed VirtualBox Guest Additions

● LXDE desktop environment available

● Boot disk with pre-installed Lubuntu Linux 12.04.2
LTS and pre-configured basic Linux services (TFTP,
NFS, ...)

● Secondary disk 2 containing source code and tools:

 Bootloader (u-boot) source tree cloned from DAVE
Embedded Systems public git repository

 Linux kernel source tree cloned from DAVE Embedded
Systems public git repository

 External pre-built toolchain

2 Please note that the secondary disk is not automatically mounted at DVDK boot. It must be mounted
manually using a dedicate script, as described in Section 3.5.5 at point 4.

February, 2016 24/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

 Yocto bsp for AXEL

 Pre-installed Yocto-based root file systems with setup
scripts, makefiles, example applications, ...

● Administrator account (dvdk) with autologin. Please
note that the user account credentials are provided
with the development kit (you can find them into the
README file contained in the sw/dvdk folder of the
kit distribution)

3.5.2 MicroSD contents
The microSD provided with XELK provides:

● A bootable partition (mmcblk0p1, vfat) containing:

 binary images (U-Boot, Linux and device tree
images), up to date with the latest XELK release

 XELK documentation

 DVDK virtual machine image (in a compressed
.OVA archive, see the sw/dvdk/README file)

● XELK root file system partition (mmcblk0p2, ext3)

XELK contains all the required software and documentation
to start developing Linux application on the AXEL platform.

February, 2016 25/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

3.5.3 Extracting the .OVA file
The DVDK image is archived in the sw/dvdk directory of the
SD card using the open source 7z format. Please use an
archive manager (eg: http://www.7-zip.org/) with support
for .7z archives to extract the virtual machine image file. To
extract it, open the first part of the compressed archive
(XELK 2.0.0.ova.7z.001) and launch the extract command.

Please note that the 7z program for Windows is included
into the dvdk directory. For Linux users: 7z is available for
the most common distros. Please refer to your distribution
software manager.

3.5.4 Importing the virtual machine
XELK provides a virtual machine image as a .OVA file,
which is a virtual application exported in Open
Virtualization Format (OVF). Please find below the
instructions for importing the virtual machine into
Virtualbox:

1. Start the Oracle VM VirtualBox Manager

2. Click on File and select "Import Virtual
Application", then click on "Open Virtual
Application"

February, 2016 26/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

3. Navigate your file system and select the .ova file
provided with the XELK

4. Click "Next" and on the next window click on
"Import"

February, 2016 27/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

February, 2016 28/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

3.5.5 Launching the virtual machine
1. Select the XELK virtual machine from the left

panel and click the “Start” button (green arrow
icon).

2. VirtualBox will open some message windows like
the following, you can click "Ok" to close them

3. At the end of the boot process, the Ubunu desktop
will be available. Please note that the user account
credentials are provided with the development kit
(you can find them into the '''README''' file
contained in the '''dvdk''' folder of the kit
distribution)

February, 2016 29/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

4. Mount the sdk disk launching the following
commands from a shell terminal:

cd /home/dvdk

sh sdk-mount.sh xelk

5. Once logged in, the system could suggest to
update the Virtualbox Guest Additions package.
You can follow the on-screen instructions to easily

February, 2016 30/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

install the updated package.

6. Check if your keyboard layout matches the Ubuntu
keyboard settings. You can change the keyboard
layout selecting System->Preferences->Keyboard
from the top panel menù.

7. Configure the Virtual Machine network interface,
as described in this page:
http://wiki.dave.eu/index.php/VirtualBox_Network_
Configuration

3.5.6 Updating the XELK distributions
It's recommended to use the latest available XELK version.
Once the DVDK is up and running, please do the following
tasks, in particular if you are installing the DVDK of a major
release and want to update to the latest maintenance
release (for additional information, please refer to Section
2.2.2.8):

1. update the source code repositories, as described
in 4.2.8.

2. update the kernel and device tree binary images
in the /srv/tftp/xelk directory for booting through
tftp. To do this, simply copy the uImage and device
tree binaries from the microSD card provided with
the kit to the /srv/tftp/xelk directory of the DVDK

For additonal information, please refer to section 4.2.7.

February, 2016 31/75

http://wiki.dave.eu/index.php/VirtualBox_Network_Configuration
http://wiki.dave.eu/index.php/VirtualBox_Network_Configuration

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

4 Develoment tools
4.1 Embedded Linux

When we talk in general about Embedded Linux3, we refer
to an embedded system running Linux operating system. As
the reader probably knows, Linux was first developed on
the PC platform, based on the famous x86 architecture.
Typical embedded systems using an operating system (O.S.
for short), are equipped with much lighter software. Recent
hardware advances made these systems so powerful that
now they can run a complex O.S. such as Linux. This choice
has several benefits:

● The developer can count on a reliable and efficient
software, developed and maintained by a large
community all over the world

● The software is open-source, so developers have
access to the whole source code

● Since Linux runs on many different platforms (x86,
PowerPC, ARM, SuperH, MIPS etc.), applications are
portable by definition

● There are a lot of open-source applications running
on top of Linux that can easily be integrated in the
embedded system

● Last but not least, there are no license fees.
● The typical Embedded Linux system is composed of:
● the bootloader – this software is run by the processor

after exiting the reset state. It performs basic
hardware initialization, retrieves the Linux kernel
image (for example from a remote server via the
TFTP protocol) and launches it by passing the proper
arguments (command line and tags)

● the Linux kernel
● the root file system – this file system is mounted

(which means "made available", "attached") by the
kernel during the boot process on the root directory

3 An exhaustive description of this topic is beyond the scope of this document. We recommend reading
specific documents, eg Building Embedded Linux Systems By Karim Yaghmour.

February, 2016 32/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

(“/”).
The typical developing environment for an Embedded Linux
system is composed of a host machine and a target
machine. The host is used by the developer to compile the
code that will run on the target. In our case the target is
obviously the AXEL module, while the host is assumed to be
a PC running the Linux operating system. The Linux kernel
running on the target can mount the root file system from
different physical media. For example, during the software
development, we strongly recommend using a directory
exported via NFS by the host for this purpose (see the
example configuration called net_nfs); however, for system
deployed to the field, the root file system is usually stored
into a flash device.

4.2 Software components

4.2.1 Toolchain
With the term "toolchain" we refer to the set of programs
that allow the building of a generic application. For
applications built to run on the same platform as the tool
chain, we use a native toolchain. On the contrary, for
applications built to run on a target architecture different
from the host architecture, we use a cross-toolchain. In this
case all the tools involved in this process are lead by the
“cross-” prefix. So we talk about cross-compiler,
cross-toolchain and so on. The cross-toolchain used to build
U-Boot and the Linux kernel is the GNU toolchain for the
ARM architecture built for x86 hosts. In other words, the
toolchain runs on x86 machines but generates binaries for
ARM processors. As for all the software compliant to the
GPL license, it is released in source code. Thus the first
thing to do to set up the developing environment should be
building the cross-toolchain. This is not a trivial task, it
takes a lot of time and hard disk space. To avoid this tedious
task, we suggest use of a pre-built toolchain as explained in
the following sections.

4.2.2 Bootloader
U-Boot is a very powerful boot loader and it became the "de

February, 2016 33/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

facto" standard on non-x86 embedded platforms. The main
tasks performed by U-Boot are:

● hardware initialization (external bus, internal
PLL, SDRAM controller etc.)

● starting a shell on the serial port allowing the
user to interact with the system through the
provided commands

● automatic execution of the boot script (if any)

After system power-up, U-Boot prints some information
about itself and about the system it is running on. Once the
bootstrap sequence is completed, the prompt is printed and
U-Boot is ready to accept user's commands. U-Boot
manages an environment space where several variables can
be stored. These variables are extremely useful to
permanently save system settings (such as ethernet MAC
address) and to automate boot procedures. This
environment is redundantly stored in two physical sectors
of boot flash memory; the default variables set is
hard-coded in the source code itself. User can modify these
variables and add new ones in order to create his/her own
custom set of configurations. The commands used to do that
are setenv and saveenv. This process allows the user to
easily set up the required configuration. Once U-Boot
prompt is available, it is possible to print the whole
environment by issuing the command printenv.

For further information on use of U-Boot, please refer to
http://www.denx.de/wiki/view/DULG/UBoot

4.2.3 Kernel
Linux kernel for i.MX processors is maintained primarily by
Freescale. Periodically Freescale releases the so-called
Linux BSP, which provides updated kernel sources.

Kernels released within XELK derive directly from
Freescale Linux BSP kernels.

4.2.3.1 Linux Device Tree

The Flattened Device Tree (FDT) is a data structure for

February, 2016 34/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

describing the hardware in a system (for further
information, please refer to http://elinux.org/Device_Tree).
Device tree source code is stored into the
arch/arm/boot/dts/ directory.

4.2.4 Target root file system
The Linux kernel running on the target needs to mount a
root file system. Building a root file system from scratch is
definitively a complex task because several well known
directories must be created and populated with a lot of files
that must follow some standard rules. Again we will use
pre-packaged root file systems that make this task much
easier. However, using a build tool as Yocto, developers can
build their own version of the root file system.

4.2.5 Yocto
The Yocto Project, hosted by the Linux Foundation, provides
open source, high-quality infrastructure and tools to help
developers create their own custom Linux distributions for
any hardware architecture and across multiple market
segments.

The Yocto Project is intended to simplify the work of the
developers, providing a set of tools and components,
including a highly configurable build system, that enables
users to construct their own custom distributions, targeted
for specific embedded devices. It is not, itself, a Linux
distribution. Rather, it is capable of producing an image for
a particular embedded device without dictating the

February, 2016 35/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

composition of the Linux distribution actually built or the
hardware architecture used.

The software components for the AXEL platform can be
built using Yocto and the source trees released with the
XELK 2.0.0 and above.

4.2.6 ConfigID
ConfigID is a new feature of DAVE Embedded Systems
products. It's main purpose is providing an automatic
mechanism for the identification of the product model and
configuration.

With ConfigID, we aim at:

● completing the hardware configuration information
that the software can't normally auto-detect (i.e. RAM
chip version,...), implementing a dedicated reliable
detect procedure

● when required, overriding the auto-detected hardware
configuration information

When implemented, this mechanism allows for:

● initializing in the proper way the hardware platform,
based on the specific features and parameters of the
product, using a common software base (eg: a typical
case is the SDRAM controller parameters, which must
be configured by U-Boot depending on the particular
memory chip, which can be different for the various
SOM models)

● getting the complete hardware configuration
(combining ConfigID with the information collectable
at runtime) of a product deployed on the field

In simple words, model identification means the capability
of reading a numerical code, stored in an available device
(SOC's OTP , I2C EEPROM, 1-wire memories, protected
NOR flash, etc.)

There are two ConfigIDs:

● SOM ConfigID: which reflects the characteristics
of the SOM (stored on the SOM itself)

February, 2016 36/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

● Carrier Board (CB) ConfigID: which reflects the
characteristics of the carrier board that hosts
the SOM (stored on the carrier board itself and
read by the SOM at boot time)

An additional attribute is UniqueID, which is a read-only
code which univocally identifies a single product and is
used for traceability.

DAVE Embedded Systems recommends to be up-to-date
with Official SOM's BSPs for taking advantages of
ConfigID/UniqueId features: this is the only required action.

4.2.6.1 ConfigID advantage

It allows U-Boot bootloader to be executed only with the
correct configuration (if the U-Boot loaded is not the proper
one, it may stop execution avoiding incorrect behaviour)

4.2.6.2 UniqueID advantage

It allows to trace univocally each individual SOMs and, in
turn, all the on-the-field equipments.

4.2.7 Software components git repositories
XELK source trees for U-Boot and Linux kernel are provided
as git repositories, so the user can immediately get access
to the development trees and keep these components in
sync and up to date with DAVE Embedded Systems
repositories.

Component Git Remote

U-Boot git@git.dave.eu:dave/axel/u-boot-imx.git

Linux git@git.dave.eu :dave/axel/linux-2.6-imx.git

Yocto BSP git@git.dave.eu :dave/axel/axel-bsp.git

4.2.8 Updating the XELK git repositories
When the git account is enabled (please refer to section
4.2.8.1), the developer can synchronize the source tree
entering the repository directory and launching the git
fetch command.

February, 2016 37/75

mailto:git@git.dave.eu
mailto:git@git.dave.eu

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

Please note that git fetch doesn't merge the commits on the
current branch. To do that, the developer should run

git merge origin/axel

or replace the ''fetch-merge'' process with a single git
pull command. Please note that the recommended method
is the ''fetch-merge'' process. For further information on
Git, please refer to the official Git Documentation
(http://git-scm.com/documentation).

4.2.8.1 RSA key generation

For getting access to the Git repositories, a ssh key is
required. Please follow the procedure reported below to
generate the RSA ssh key (we assume that the ssh package
and the required tools are installed on the Linux
development server):

● select your username (ad es. username@myhost.com)

● start a shell session on the Linux host

● enter the .ssh subdirectory into your home directory:

cd ~/.ssh/

● launch the following command:

ssh-keygen -t rsa -C "username@myhost.com"

● this command creates the files
~/.ssh/username@myhost.com ('''private key''') and
~/.ssh/username@myhost.com.pub ('''public key''')

● edit your ~/.ssh/config adding the following lines:

Host git.dave.eu

 User git

 Hostname git.dave.eu

 PreferredAuthentications publickey

 IdentityFile ~/.ssh/username@myhost.com

Please send the public key file to the following email
support addresses

support-axel@dave.eu

February, 2016 38/75

mailto:~/.ssh/username@myhost.com
http://git-scm.com/documentation

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

with the request for the creation of a new public git account
associated to your username. The support team will enable
the account and send you a confirmation as soon as
possible.

4.2.8.2 Checking the ssh connection to the git repositories

To check the ssh connection, you can use the following
command:

ssh -vT git@git.dave.eu

You'll get the log messages of the connection, which will
help in case of problems.

February, 2016 39/75

mailto:git@git.dave.eu

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

4.3 Development environment

4.3.1 Introduction
The following figure show the typical development
environment for an Embedded Linux system: it is composed
of a host machine and a target machine.

The typical developing environment for an Embedded Linux
system is composed of a host machine and a target
machine. The host is used by the developer to
(cross-)compile the code that is to run on the target. In our
case the target is the AXEL CPU module, while the host is
assumed to be a PC running the Linux operating system,
either in a physical installation or as a virtual machine. The
bootloader running on the target can download the Linux
kernel image through the network (TFTP), as well as the
u-boot binary images (useful when an update of the

February, 2016 40/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

bootloader is required). Moreover, the Linux kernel running
on the target is able to mount the root file system from
different physical media, for example from a directory
exported via Network File System (NFS) by the host. This
strategy (kernel image and RFS retrieved from the network)
saves time during the development phase, since no flash
reprogramming or removable storage (SD, usb pen drives,
external disks) is required to test new versions or updates
of the software components.

4.3.2 The build system
A build system is a set of source trees, Makefiles, patches,
configuration files, tools and scripts that makes it easy to
generate all the components of a complete embedded Linux
system. A build system, once properly set up, automates the
configuration and cross-compilation processes, generating
all the required targets (userspace packages (libraries,
programs), the kernel, the bootloader and root filesystem
images) depending on the configuration. Some well known
build systems are the following:

● OpenEmbedded
(http://wiki.openembedded.net/index.php/Main_Page)

● Yocto (https://www.yoctoproject.org/)

● Buildroot (http://buildroot.uclibc.org)

● LTIB (http://ltib.org/)

For the Linux BSP release , Freescale officially supports
Yocto as build system and therefore XELK 2.0.0 and above
kits are based on Yocto.

4.3.3 Overview of the installed components
Once the virtual machine is running and the secondary disk
is mounted, the actual development kit can be found into
the directory /home/dvdk/xelk:

February, 2016 41/75

http://ltib.org/
http://buildroot.uclibc.org/

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

The xelk directory contains the following subdirectories:

● linux-2.6-imx: the Linux source tree

● u-boot-am33x: the U-Boot source tree

● yocto: the Yocto SDK installation directory

● qtcreator-x.y.z: pre-installed and pre-configured QtCreator
IDE for Qt application development

● rfs: XELK provides three root file systems:

 axel-base: minimal root file system with basic
packages (/home/dvdk/xelk/rfs/axel-base)

 axel-fsl-image: full root file system with lots of
packages (including the gui application from
Freescale) useful during the development phase
(/home/dvdk/xelk/rfs/axel-fsl-image)

 axel-qt5: root file system with Qt 5.3.2 libraries
and examples (/home/dvdk/xelk/rfs/axel-qt5)

● env.sh: a bash script for setting the environment variables,
containing the following lines:

February, 2016 42/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

export
PATH=~/xelk/yocto/sdk/axel-qt5/sysroots/x86_64-po
kysdk-linux/usr/bin/arm-poky-linux-gnueabi:$PATH

export ARCH=arm

export CROSS_COMPILE=arm-poky-linux-gnueabi-

4.3.4 Setting up the server environment
During development, user needs to interact with the target
system. This section describes the tools that must be
installed and configured on the host system for this
purpose. Please note that all these tools are already
installed and properly configured on the virtual machine
image provided with the XELK.

4.3.4.1 TFTP Server

One of the most useful features of a bootloader during
development is the capability to download the Linux kernel
from the network. This saves a lot of time because
developer doesn't have to program the image in flash every
time he/she modifies it. U-Boot implements the TFTP
protocol (see the tftp command), so the host system must
be configured to enable the TFTP service. Installation and
configuration of a TFTP server depends on the host Linux
distribution.

The default DVDK tftp installation has /srv/tftp as work
directory. A subdirectory dedicated to the image files
associated to the XELK (/srv/tftp/xelk) is available,
but developers can add their custom subdirectories when
required.

4.3.4.2 NFS Server

One of the most important components of a Linux system is
the root file system. A good development root file system
provides the developer with all the useful tools that can
help developers on their work. Such a root file system can
become very big in size, so it's hard to store it in flash
memory. User could split the file system in different parts,
mounting them from different media (flash, network, usb...).
But the most convenient thing is to mount the whole root

February, 2016 43/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

file system from the network, allowing the host system and
the target to share the same files. In this way, developers
can quickly modify the root file system, even “on the fly”
(meaning that the file system can be modified while the
system is running). The most common way to setup a
system like the one described is through NFS (Network File
System). As for TFTP, installation and configuration
depends on the host Linux distribution.

The default DVDK NFS installation is configured for sharing
/home directory and all the subdirectories.

4.3.4.3 Pre-built toolchain

To start developing software for the AXEL platform, users
need a proper toolchain, which can be pre-built or
built-from-scratch. Building a toolchain from scratch is not
a trivial task (though using a recent build system is easier
than in the past), so the recommended approach consists in
using a pre-built toolchain.

XELK provides the Poky toolchain built with the Yocto 1.5
version (GCC version is 4.8.1).

4.3.4.4 Pre-built root file system

Linux needs a root file system: a root file system must
contain everything needed to support the Linux system
(applications, settings, data, ..). The root file system is the
file system that is contained on the same partition on which
the root directory is located. The Linux kernel, at the end of
its startup stage, mounts the root file system on the
configured root device and finally launches the /sbin/init,
the first user space process and "father" of all the other
processes. An example of root file system is shown below:

For more information on the Linux filesystem, please refer
to
http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/.

February, 2016 44/75

http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

XELK provides pre-built root file systems, that can be used
during the evaluation/development phase, since they
contains the software packages for working with the AXEL
platform.

XELK root file systems are built with the Yocto build system
and are stored into the following directories:

● /home/dvdk/xelk/rfs/axel-base

● /home/dvdk/xelk/rfs/axel-fsl-image

● /home/dvdk/xelk/rfs/axel-qt5

February, 2016 45/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

4.4 Building the software components with Yocto
The build process creates an entire Linux distribution from
source. The build process can be summarized as follows:

● Make sure that all the prerequisites are met

● Initialize the build environment, as described in 4.4.2.

● Optionally ensure the conf/local.conf configuration
file, which is found in the Build Directory, is set up
how you want it. This file defines many aspects of the
build environment including the target machine
architecture through the MACHINE variable, the
development machine's processor use through the
BB_NUMBER_THREADS and PARALLEL_MAKE
variables, and a centralized tarball download directory
through the DL_DIR variable.

● Build the image using the bitbake command. If you
want information on BitBake, see the BitBake User
Manual.

N.B. Since the XELK virtual machine is already configured
to match all the requirements for using the Yocto build
system, developers who wants to quickly build a Yocto
image can directly go to section 4.4.3 .

4.4.1 Prerequisites
The following prerequisites are required and only need to
be done once. Please note that the XELK virtual machine is
already configured to match all the requirements for using
the Yocto build system.

Some generic development tools are required on the host
Linux machine:

● git

● curl

● build-essential

● diffstat

● texinfo

February, 2016 46/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

● gawk

● chrpath

● ia32-libs (if the host machine is running a 64-bit OS)

● python-m2crypto

These packages can be installed with the following
command:

sudo apt-get install git build-essential diffstat
texinfo gawk chrpath ia32-libs python-m2crypto

It is also recommended to switch the system shell from
Ubuntu's standard dash to more universal bash:

$ sudo dpkg-reconfigure dash

4.4.2 Initializing the build environment
In the XELK, we have simplified the Yocto initialization
phase, relying on the repo tool and on a Axel bsp git
repository, so that the initialization can be completed with a
few commands as reported below:

$ curl
http://commondatastorage.googleapis.com/git-repo-do
wnloads/repo > repo

$ chmod +x repo

./repo init -u
git@git.dave.eu:dave/axel/axel-bsp.git -b axel-dora

$./repo sync

4.4.3 Build the Yocto image
Please note that even building the basic root file system
requires a few hours to complete the process on a mid-hi
range desktop PC (4-6 cores, 8-12 GiB RAM), also
depending on the Internet connection speed (all source are
fetched from the network). Nearly 20GiB of disk space is
required for the build. Moreover, building inside the DVDK
adds some overhead, since the performances of a virtual
machine are reduced if compared to the physical hardware.
Thus, it's recommended to check the hardware capabilities
of the host system and, when building with Yocto is

February, 2016 47/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

required, developers should consider the following options:

● migrating the build system to a physical machine

● assuming that the host system has the required
resources, extending the hardware capabilities of the
default DVDK (eg: adding more cores and disk space)

Once completed the initialization phase, developers can
launch the Yocto image build process with the following
commands:

$ cd ~/xelk/axel-bsp

$ source source axel-bsp-init-env.sh build

$ bitbake axel-fsl-image-gui

Please note that three different images are available:

● axel-fsl-image-gui (includes the gui application from
Freescale)

● axel-fsl-qt5-image (root file system with Qt 5.3.2
libraries and examples)

● base-rootfs-image (minimal root file system)

The resulting files (kernel, device tree and u-boot binaries,
plus root file system in a .tar.gz archive) will then be
available inside the build/tmp/deploy/images/axel
directory.

4.5 Building the software components outside
Yocto

4.5.1 Build/configure U-Boot
NOTE: before building U-Boot, please check for updates of
the source code published in the git repositories, using the
git fetch/merge or the git pull commands. For further
details, please refer to section 4.2.7.

Assuming that you've configured the environment variables
sourcing the env.sh script with the following command

dvdk@dvdk-vm:~/xelk$ source env.sh

enter the U-Boot sources directory (~/xelk/u-boot-imx)

February, 2016 48/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

and run the following command:

dvdk@dvdk-vm:~/xelk/u-boot-imx$ make TARGET

where the available targets are listed in the following table:

SOC Environment Target Notes

i.MX6Q SPI NOR mx6qaxel_spi

i.MX6Q MMC mx6qaxel

For example, to build U-Boot for SPI boot, please enter the
following command:

dvdk@dvdk-vm:~/xelk/u-boot-imx$ make mx6qaxel_spi

Once the build process is complete, the binary images can
be copied to the /srv/tftp/xelk/ directory with the
following command:

dvdk@dvdk-vm:~/xelk/u-boot-imx$ sudo cp
u-boot.imx /srv/tftp/xelk/

4.5.2 Build/configure Linux kernel
NOTE: before building Linux, please check for updates of
the source code published in the git repositories, using the
git fetch/merge or the git pull commands. For further
details, please refer to section 4.2.7.

Assuming that you've configured the environment variables
sourcing the env.sh script with the following command

dvdk@dvdk-vm:~/xelk$ source env.sh

enter the Linux sources directory (~/xelk/linux-2.6-imx)
and run the following commands:

dvdk@dvdk-vm:~/xelk/linux-2.6-imx$ make
imx_v7_axel_defconfig

dvdk@dvdk-vm:~/xelk/linux-2.6-imx$ make
UIMAGE_LOADADDR=0x10008000 uImage imx6q-xelk-l.dtb
imx6q-xelk-h.dtb imx6q-xelk-l-2.0.0.dtb

The former command selects the default AXEL kernel
configuration, while the latter builds the Linux binary image
with the required U-Boot header and the binary device tree
(.dtb) files for the following platforms:

February, 2016 49/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

● imx6q-xelk-l.dtb: XELK-L kit equipped with AXEL
LITE SOM

● imx6q-xelk-h.dtb: XELK-H kit equipped with AXEL
ULTRA SOM

● imx6q-xelk-l-2.0.0.dtb: XELK-L kit with hardware
released with XELK version 2.0.0 and older

Default linux kernel configuration can be changed by using
the standard menuconfig, xconfig, gconfig make targets.

Subsequent builds just require uImage make target to
update the binary image.

Once the build process is completed, the kernel binary
image is stored into the
linux-2.6-imx/arch/arm/boot/uImage file, while the
device tree binary is stored in:

XELK type DTB file

XELK-L kit equipped with AXEL LITE
SOM

linux-2.6-imx/arch/arm/boot/dts/
imx6q-xelk-l.dtb

XELK-H kit equipped with AXEL ULTRA
SOM

linux-2.6-imx/arch/arm/boot/dts/
imx6q-xelk-h.dtb

XELK-L kit with hardware released
with XELK version 2.0.0 and older

linux-2.6-imx/arch/arm/boot/dts/
imx6q-xelk-l-2.0.0.dtb

These files can be copied to the /srv/tftp/xelk/ directory
with the following commands:

dvdk@dvdk-vm:~/xelk/linux-2.6-imx$ sudo cp
arch/arm/boot/uImage /srv/tftp/xelk/

dvdk@dvdk-vm:~/dvdk/xelk/linux-2.6-imx$ sudo cp
arch/arm/boot/dts/imx6q-xelk-*.dtb /srv/tftp/xelk/

4.5.3 Build a custom application
Some users may prefer to cross-compile their applications
outside of the Yocto flow. It maybe specifically useful and
easier for new projects in their prototyping and
proof-of-concept stages or for any smaller applications in
general. This way users don't have to worry about creating
Yocto "recipes" for their applications and becoming familiar
with the entire Yocto build system.

February, 2016 50/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

In order to cross-compile an application, written in C/C++,
the cross-toolchain provided with the XELK is required.

Assuming that you've configured the environment variables
sourcing the env.sh script with the following command

dvdk@dvdk-vm:~/xelk$ source env.sh

developers can write a simple "Hello world" application,
called for example hello.c:

#include <stdio.h>

int main()

{

 printf("Hello world\n");

 return 0;

}

To cross-compile it:

$ arm-poky-linux-gnueabi-gcc -o hello hello.c

Then the executable file can be copied to the root file
system, and executed from the AXEL system:

:~#./hello

Hello world

February, 2016 51/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

4.6 Programming the flash memory

4.6.1 Flashing binary images in NOR/NAND flash

4.6.1.1 U-Boot
run load

run spi_update

4.6.1.2 Linux kernel
run loadk

run spi_updatek – to store the kernel in SPI NOR flash

run nand_updatek – to store the kernel in NAND flash

4.6.1.3 Device tree
run loadfdt

run spi_updatefdt – to store the dtb in SPI NOR flash

run nand_updatefdt – to store the dtb in NAND flash

4.6.2 Flashing root file systems
The recommended procedure is the following:

● boot the system from network (NFS)

● format the flash MTD partition that have the size
required to store the rfs

● create and mount the MTD partition, using the file
system of choice (JFFS2, UBIFS, ...)

● transfer the root file system on the mounted partition
(typically by uncompressing a tar.gz archive)

Please find below an example of the command sequence
that can be used for an UBIFS file system (after booting the
board via nfs). Please note that X is the mtd partition
number (you can read the /proc/mtd file to find the
partition mapping):
ubiformat /dev/mtdX

ubiattach /dev/ubi_ctrl -m X

ubimkvol /dev/ubi0 -N rootfs -m

February, 2016 52/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

mount -t ubifs /dev/ubi0_0 /mnt/ubifs

cd /mnt/ubifs

tar -zxvf <path to rfs archive>

cd /

sync

umount /mnt/ubifs

ubidetach /dev/ubi_ctrl -m X

reboot

February, 2016 53/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

4.7 Customizing the splash screen
Starting from version 2013.04-xelk-2.2.0, U-Boot for Axel
SOMs provides support for a customizable splash screen.
The following sections describe how to use this feature.

4.7.1 Customizing the splash screen
The splash screen image can be downloaded via tftp to a
specific RAM address (splashimage) and then stored in the
flash memory.

The following U-Boot environment variables are required:

● splashimage: RAM address where the BMP image is
loaded. Please note that it must be a 32-bit aligned
address with a 0x2 offset (eg: 0x20000002)

● loadsplash: comand for loading the BMP image from
the storage device (e.g flash memory) to RAM. This
command is automatically run by U-Boot at startup

● splashpos: image position (eg: splashpos=m,m, for
centering the image)

4.7.2 Additional resources
For further details on splash screen support in U-Boot,
please refer to:

● http://www.denx.de/wiki/DULG/UBootSplashScreen

● http://www.denx.de/wiki/DULG/UbootBitmapSupport

4.7.3 Splash image in NOR SPI flash

4.7.3.1 U-Boot variables
loadsplash=run spi_loadsplash

spi_loadsplash=sf probe; sf read ${splashimage} 0x800000 $
{splashsize}

splashfile=splash_image.bmp

splashimage=0x20000002

splashpos=m,m

splashsize=0x400000

February, 2016 54/75

http://www.denx.de/wiki/DULG/UbootBitmapSupport
http://www.denx.de/wiki/DULG/UBootSplashScreen

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

loadsplashfile=tftpboot ${loadaddr} axel/${splashfile}

spi_updatesplash=sf probe; sf erase 0x800000 +${filesize}; sf
write ${loadaddr} 0x800000 ${filesize}

4.7.3.2 Commands

The following commands are used to store in NOR SPI flash
a BMP image loaded via tftp:
run loadsplashfile

run spi_updatesplash

4.7.4 Splash image in NAND flash

4.7.4.1 U-Boot variables
mtdparts=mtdparts=gpmi-nand:8M(nand-uboot),1M(nand-env1),1M(n
and-env2),1M(nand-fdt),1M(nand-spare),8M(nand-kernel),4M(nand
-splash),-(nand-ubi)

loadsplash=run nand_loadsplash

nand_loadsplash=nand read ${splashimage} nand-splash

splashfile=splash_image.bmp

splashimage=0x20000002

splashpos=m,m

splashsize=0x400000

loadsplashfile=tftpboot ${loadaddr} axel/${splashfile}

nand_updatesplash=nand erase.part nand-splash; nand write $
{loadaddr} nand-splash ${filesize}

Please note that the NAND mtd partition for the splash
image ('''nand-splash''') is defined using the mtdparts
parameter, and then referenced by the nand
{erase,read,write} commands.

4.7.4.2 Commands

The following commands are used to store in NAND flash a
BMP image loaded via tftp:
run loadsplashfile

run nand_updatesplash

February, 2016 55/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

4.8 Building Qt applications
Qt Creator is pre-installed and pre-configured in the DVDK.
This means that developers can quickly build

4.8.1 Launching Qt Creator
To launch QtCreator, simply open the main menù clicking
on the LXDE icon on the bottom-left corner and select
Programming->Qt Creator

February, 2016 56/75

Fig. 3: Launching QtCreator

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

4.8.2 Building a QtQuick “Hello World!”
Follow the wizard to create a simple “Hello World!”
application using the QtQuick 2 library:

February, 2016 57/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

February, 2016 58/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

February, 2016 59/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

February, 2016 60/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

5 Frequently Asked Questions
5.1 Q: Where can I found AXEL SOM information?

A: please refer to the following table:

Document Location

AXEL main page on
DAVE Embedded
Systems Developers
Wiki

http://wiki.dave.eu/index.php/Category
:Axel

AXEL LITE main page on
DAVE Embedded
Systems Developers
Wiki

http://wiki.dave.eu/index.php/Category
:AxelLite

AXEL Hardware Manual http://www.dave.eu/sites/default/files/fi
les/axel-hm.pdf

AXEL LITE Hardware
Manual

http://www.dave.eu/sites/default/files/fi
les/axellite-hm.pdf

AXEL product page http://www.dave.eu/products/som/frees
cale/imx6_axel-ultra

AXEL LITE product page http://www.dave.eu/products/som/frees
cale/imx6_axel-lite

5.2 Q: I've received the XELK package. How am I
supposed to start working with it?
A: You can follow the steps listed below:

1. Check the kit contents with the packing list included in
the box

2. Insert the SD into the card slot on the carrier board

3. Connect the power supply adapter and the serial cable
as described in Section 3.2

4. Start your terminal emulator program

5. Switch on the power supply

February, 2016 61/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

6. Monitor the boot process on the serial console

7. Install the DVDK virtual machine image (please refer to
Section 3.5)

8. Check the XELK documentation (doc and hw directories
of the microSD)

9. Check the virtual machine components (please refer to
Section 3.5.1)

10. Check for updates of the public git repositories (please
refer to Section 4.2.8)

5.3 Q: How can I update the XELK version?
A: please refer to Section 4.2.8 and the following page on
the DAVE Embedded Systems Developer's Wiki:
http://wiki.dave.eu/index.php/Software_Manual_%28Axel
%29#XELK_Updates

5.4 Q: How can I update the git repositories
provided with XELK 2.0.0 to XELK 2.2.0
version?
A: please update the git repositories, using the git
fetch/merge or the git pull commands. For further
details, please refer to section 4.2.8 and the DAVE
Embedded Systems Developer's Wiki page:
http://wiki.dave.eu/index.php/Software_Manual_%28Axel
%29#XELK_Updates

5.5 Q: How can I work with the XYZ
peripheral/interface?
A: please refer to the “i.MX 6Dual/6Quad Linux Reference

Manual” provided with the L3.10.17_1.0.0 documentation
package (https://www.freescale.com/webapp/Download?
colCode=L3.10.17_1.0.0_IMX6QDLS_BUNDLE&appType=lice
nse&location=null&WT_TYPE=Board%20Support
%20Packages&WT_VENDOR=FREESCALE&WT_FILE_FORMAT
=gz&WT_ASSET=Downloads&fileExt=.gz&Parent_nodeId=13
37637154535695831062&Parent_pageType=product).

February, 2016 62/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

5.6 Q: How can I configure the AXEL system to
boot from network?
A: booting from network is very helpful during the software
development (both for kernel and applications). The kernel
image is downloaded via TFTP while the root file system is
remotely mounted via NFS from the host. It is assumed that
the development host:

● is connected with the target host board through an
Ethernet LAN

● exports the directory containing the root file system for
the target through the NFS server

● runs a TFTP server

● has a proper subnet IP address

If your system does not match this configuration, just
change the necessary variables and store them permanently
with the u-boot setenv/saveenv commands. To do that,
from the U-boot shell, please check the following
parameters and set them accordingly with your host and
target configuration:

Paramet
er

Description Default

serverip IP address of the host
machine running the tftp/nfs
server

192.168.0.13

ipaddress IP address of the target 192.168.0.x

ethaddr MAC address of the target 00:50:c2:1e:af:e0

netmask Netmask of the target 255.255.255.0

gatewayip IP address of the gateway 192.168.0.254

netdev Ethernet device name eth0

rootpath Path to the NFS-exported
directory

/opt/nfsroot/axel/xelk

bootfile Path to the kernel binary
image on the tftp server

axel/uImage

fdtfile
Path to the device tree
binary image on the tftp
server

axel/imx6q-xelk-h.dtb

February, 2016 63/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

Paramet
er

Description Default

nfsargs
Kernel command line with
parameters for loading the
root file system through NFS

setenv bootargs root=/dev/nfs rw
nfsroot=${serverip}:${rootpath}
rootdelay=2

To run this configuration, just enter the command

run net_nfs

5.7 Q: Can you suggest some guidelines for the
carrier board design?
A: As a starting point, you can refer to the Wiki page
dedicated to the carrier board design guidelines
(http://wiki.dave.eu/index.php/Carrier_board_design_guideli
nes_%28SOM%29), that will highlight some best practices
that applies to all SOMs. For specific information on AXEL,
please refer to the AXEL Integration Guide (
http://wiki.dave.eu/index.php/Integration_guide_%28Axel
%29)

5.8 Q: How can I change the CPU clock frequency?
A: The frequency of the CPU can be changed on the run
using the Cpufreq framework (please refer to the
documentation included into the Documentation/cpu-freq
directory of the kernel source tree). The cpufreq framework
works in conjunction with the related driver & governor.

Cpufreq implementation controls the Linux OPP (Operating
Performance Points) adjusting the CPU core voltages and
frequencies. CPUFreq is enabled by default in the AXEL
kernel configuration.

To view the available governors:
root@axel-lite:~# cat
/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_govern
ors

interactive conservative ondemand userspace powersave
performance

To view the supported OPP's (frequency in KHz):
root@axel-lite:~# cat

February, 2016 64/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_freque
ncies

396000 792000 996000

To change the OPP:
root@axel-lite:~# echo 396000 >
/sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

Please note that OPP can be changed only using the
userspace governor. If governors like ondemand is used,
OPP change happens automatically based on the system
load.

Please also note that the imx6q-cpufreq driver
(http://lxr.free-electrons.com/source/drivers/cpufreq/imx6q-
cpufreq.c?v=3.10) works on a per-SOC policy (and not on a
per-core one), so the cpufreq governor changes the clock
speed for all the ARM cores simultaneously.

5.9 Q: How can I limit the number of active CPU
cores?
A: To evaluate the performances of the system with reduced
number of CPU cores, the user can pass the maxcpus
parameter to the kernel, by setting the command line
arguments in u-boot.

For example, to set the number of active cores to 2, add the
maxcpus parameter to the addmisc environment variable:
setenv addmisc 'setenv bootargs ${bootargs} maxcpus=2'

And add the addmisc variable to the boot macro:
setenv net_nfs 'run loadk loadfdt nfsargs addip addcons
addmisc; bootm ${buf} ${dtb_addr}'

For further details, please refer to the
Documentation/kernel-parameters.txt file of the kernel
source tree provided with the XELK.

5.10 Q: How can I modify the IP address of the
board?
A: The network configuration is managed by a mix of init
scripts and configuration files. In particular, the
/etc/network/interfaces provides the interface settings

February, 2016 65/75

http://lxr.free-electrons.com/source/drivers/cpufreq/imx6q-cpufreq.c?v=3.10
http://lxr.free-electrons.com/source/drivers/cpufreq/imx6q-cpufreq.c?v=3.10

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

used by the ifup and ifdown scripts, which are in turn
activated by the /etc/init.d/networking init script. A
basic strategy for IP address management is:

set a factory default

allow customers to change it by modifying the
/etc/network/interfaces file.

An example is the following, that sets a static ip address
and reads the MAC address from the kernel command line:
/etc/network/interfaces -- configuration file for ifup(8),
ifdown(8)

The loopback interface

auto lo

iface lo inet loopback

Wired or wireless interfaces

auto eth0

iface eth0 inet static

 pre-up ifconfig eth0 hw ether $(cat /proc/cmdline | sed
's/.*eth=\([^]*\).*/\1/')

 address 192.168.1.1

 netmask 255.255.255.0

February, 2016 66/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

6 Appendices
6.1 U-Boot startup messages

The following messages will be printed on the serial console
during U-Boot startup (please note that messages may vary
for different U-Boot releases):

U-Boot 2013.04 (Jan 12 2016 - 15:51:23)-xelk-2.2.0

CPU: Freescale i.MX6Q rev1.5 at 792 MHz
CPU: Temperature 41 C, limits (-40 C, 125 C), calibration data: 0xc0
Reset cause: POR
Environment: SPI Flash
I2C: ready
DRAM: 2 GiB
Now running in RAM - U-Boot at: 8ff28000
NAND: 512 MiB
MMC: FSL_SDHC: 0, FSL_SDHC: 1
SF: Detected S25FL256S with page size 64 KiB, total 32 MiB
CB ConfigID CRC mismatch for 0x00000000 (was 0x00000000, expected 0x2144df1c) at block 3
(offset 96): using default
Display: LDB-AM-800480STMQW-TA1 (800x480)
SF: Detected S25FL256S with page size 64 KiB, total 32 MiB
In: serial
Out: serial
Err: serial
SOM ConfigID#: 00000003
SOM UniqueID#: df646299:0b0579d4
CB ConfigID CRC mismatch for 0x00000000 (was 0x00000000, expected 0x2144df1c) at block 3
(offset 96): using default
CB ConfigID#: ffffffff
CB UniqueID#: 00000000:00000000
Board: MX6Q-AxelLiteCB ConfigID CRC mismatch for 0x00000000 (was 0x00000000, expected
0x2144df1c) at block 3 (offset 96): using default
 on XELK
CB ConfigID CRC mismatch for 0x00000000 (was 0x00000000, expected 0x2144df1c) at block 3
(offset 96): using default
Power: found PFUZE100 (devid=10, revid=21)
HW ver#: 0x1 (module_id)
CB ConfigID CRC mismatch for 0x00000000 (was 0x00000000, expected 0x2144df1c) at block 3
(offset 96): using default
unsupported boot devices
Net: FEC
Normal Boot
Hit any key to stop autoboot: 0
U-Boot >

6.2 U-Boot default environment
The following messages will be printed on serial console
entering the print command from the U-Boot shell (please
note that messages may vary for different XELK releases):

addandroidargs=setenv bootargs ${bootargs} init=/init androidboot.console=ttymxc2
androidboot.hardware=freescale
addcons=setenv bootargs ${bootargs} console=ttymxc2,115200n8
adddisp0=setenv bootargs ${bootargs} video=mxcfb0:dev=lcd,${panel},if=RGB666
addhdmi=setenv bootargs ${bootargs} video=mxcfb0:dev=hdmi,1920x1080M@60,bpp=32
addip=setenv bootargs ${bootargs} ip=${ipaddr}:${serverip}:${gatewayip}:${netmask}:$
{hostname}:${netdev}:off panic=1 fec_mac=${ethaddr}

February, 2016 67/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

addlvds0=setenv bootargs ${bootargs} video=mxcfb0:dev=ldb,${panel},if=RGB666 ldb=sin0
addlvds1=setenv bootargs ${bootargs} video=mxcfb0:dev=ldb,${panel},if=RGB666 ldb=sin1
addmisc=setenv bootargs ${bootargs} vmalloc=400M ${mtdparts}\\;${mtdparts_spi}
baudrate=115200
bootcmd=run usbrecovery; run mmcrecovery; run ${normalboot}
bootdelay=3
bootfile=axel/uImage
bootscript=echo Running bootscript from ${recoverydev} ...; source
configid_fixupfdt=if configid checkfdt ${fdtaddr} som_configid ${som_configid#}; then if
configid checkfdt ${fdtaddr} cb_configid ${cb_configid#}; then configid fdt_uniqueid $
{fdtaddr}; fi; fi
ethaddr=00:50:c2:1e:af:e0
ethprime=FEC0
fdt_high=FFFFFFFF
fdtaddr=0x18000000
fdtfile=axel/imx6q-xelk-h.dtb
hostname=xelk
initrd_high=0xffffffff
ipaddr=192.168.0.89
load=tftp ${loadaddr} ${uboot}
loadaddr=0x12000000
loadbootscript=fatload ${recoverydev} 0:1 ${loadaddr} ${script};
loadfdt=tftpboot ${fdtaddr} ${serverip}:${fdtfile}
loadk=tftpboot ${loadaddr} ${serverip}:${bootfile}
loadsplash=run spi_loadsplash
loadsplashfile=tftpboot ${loadaddr} axel/${splashfile}
mmc_loadfdt=fatload mmc 0:1 ${fdtaddr} imx6q-xelk-h.dtb
mmc_loadk=fatload mmc 0:1 ${loadaddr} uImage
mmc_loadsplash=fatload mmc 0:1 ${loadaddr} ${splashfile}; cp.b ${loadaddr} ${splashimage} $
{filesize}
mmcargs=setenv bootargs root=${mmcroot}
mmcboot=run mmcargs addcons addmisc; if run mmc_loadk; then if run mmc_loadfdt; then if run
configid_fixupfdt; then bootm ${loadaddr} - ${fdtaddr}; fi ; fi; fi
mmcrecovery=mmc dev 0; mmc rescan; setenv recoverydev mmc; run recovery
mmcroot=/dev/mmcblk0p2 rootwait rw
mtdids=nand0=gpmi-nand
mtdparts=mtdparts=gpmi-nand:8M(nand-uboot),1M(nand-env1),1M(nand-env2),1M(nand-fdt),1M(nand-
spare),8M(nand-kernel),4M(nand-splash),-(nand-ubi)
mtdparts_spi=spi32766.0:1M(spi-uboot),256k(spi-env1),256k(spi-env2),512k(spi-dtb),6M(spi-ker
nel),4M(spi-splash),-(spi-free)
nand_andr_nand=run nand_loadk nand_loadfdt nandargs addcons addmisc addandroidargs; if run
configid_fixupfdt; then bootm ${loadaddr} - ${fdtaddr}; fi
nand_loadfdt=nand read ${fdtaddr} nand-fdt
nand_loadk=nand read ${loadaddr} nand-kernel
nand_loadsplash=nand read ${splashimage} nand-splash
nand_nand=run nand_loadk nand_loadfdt nandargs addcons addmisc; if run configid_fixupfdt;
then bootm ${loadaddr} - ${fdtaddr}; fi
nand_update=echo update for NAND boot using kobs-ng from Linux
nand_updatefdt=nand erase.part nand-fdt; nand write ${fdtaddr} nand-fdt ${filesize}
nand_updatek=nand erase.part nand-kernel; nand write ${loadaddr} nand-kernel ${filesize}
nand_updatesplash=nand erase.part nand-splash; nand write ${loadaddr} nand-splash $
{filesize}
nandargs=setenv bootargs ubi.mtd=7 root=ubi0_0 rootfstype=ubifs rw
net_andr_nfs=run loadk loadfdt nfsargs addip addcons addmisc addandroidargs; if run
configid_fixupfdt; then bootm ${loadaddr} - ${fdtaddr}; fi
net_nfs=run loadk loadfdt nfsargs addip addcons addmisc; if run configid_fixupfdt; then
bootm ${loadaddr} - ${fdtaddr}; fi
netdev=eth0
netmask=255.255.255.0
nfsargs=setenv bootargs root=/dev/nfs rw nfsroot=${serverip}:${rootpath},v3,tcp
normalboot=net_nfs
panel=LDB-AM-800480STMQW-TA1
recovery=if run loadbootscript; then run bootscript; fi
rootpath=/opt/nfsroot/axel/xelk
script=boot.scr
serverip=192.168.0.13
spi_andr_nand=sf probe; run spi_loadk spi_loadfdt nandargs addcons addmisc addandroidargs;
if run configid_fixupfdt; then bootm ${loadaddr} - ${fdtaddr}; fi
spi_loadfdt=sf read ${fdtaddr} 180000 80000
spi_loadk=sf read ${loadaddr} 200000 600000
spi_loadsplash=sf probe; sf read ${splashimage} 0x800000 ${splashsize}
spi_nand=sf probe; run spi_loadk spi_loadfdt nandargs addcons addmisc; if run
configid_fixupfdt; then bootm ${loadaddr} - ${fdtaddr}; fi

February, 2016 68/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

spi_update=sf probe; sf erase 0 +${filesize};sf write ${loadaddr} 400 ${filesize}
spi_updatefdt=sf erase 180000 80000; sf write ${fdtaddr} 180000 ${filesize}
spi_updatek=sf erase 200000 600000; sf write ${loadaddr} 200000 ${filesize}
spi_updatesplash=sf probe; sf erase 0x800000 +${filesize}; sf write ${loadaddr} 0x800000 $
{filesize}
splashfile=splash_image.bmp
splashimage=0x20000002
splashpos=m,m
splashsize=0x400000
uboot=axel/u-boot.imx
usbrecovery=usb start; usb dev 0; setenv recoverydev usb; run recovery

6.3 Boot messages on the serial console
The following messages will be printed on serial console
during the Linux boot process (please note that messages
may vary for different Linux releases):

U-Boot > run net_nfs
Using FEC device
TFTP from server 192.168.0.13; our IP address is 192.168.0.123
Filename 'axel/xelk-2.2.0/xelk-2.2.0_uImage'.
Load address: 0x12000000
Loading: ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 #################
 1.9 MiB/s
done
Bytes transferred = 5741528 (579bd8 hex)
Using FEC device
TFTP from server 192.168.0.13; our IP address is 192.168.0.123
Filename 'axel/xelk-2.2.0/xelk-2.2.0_imx6q-xelk-l.dtb'.
Load address: 0x18000000
Loading: ##########
 1.3 MiB/s
done
Bytes transferred = 46202 (b47a hex)
Booting kernel from Legacy Image at 12000000 ...
 Image Name: Linux-3.10.17-xelk-2.2.0
 Image Type: ARM Linux Kernel Image (uncompressed)
 Data Size: 5741464 Bytes = 5.5 MiB
 Load Address: 10008000
 Entry Point: 10008000
 Verifying Checksum ... OK
Flattened Device Tree blob at 18000000
 Booting using the fdt blob at 0x18000000
 Loading Kernel Image ... OK
OK
Power: using LDO bypass mode!
Frame buffer: configure splashscreen reserved memory to 0x8f600000 (1 MiB)
 Using Device Tree in place at 18000000, end 1800e479

Starting kernel ...

February, 2016 69/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Linux version 3.10.17-xelk-2.2.0 (jenkins@linuxserver2) (gcc version 4.8.1
(GCC)) #1 SMP PREEMPT Tue Jan 12 15:57:48 CET 2016
[0.000000] Machine: Freescale i.MX6 Quad/DualLite (Device Tree), model: AxelLite Quad on
XELK-L
[0.000000] Reserved memory: created ipuv3_fb memory pool at 0x8f600000, size 1 MiB
[0.000000] Reserved memory: initialized node splashscreen, compatible id fsl,ipuv3-fb
[0.000000] cma: CMA: reserved 320 MiB at 62000000
[0.000000] PERCPU: Embedded 8 pages/cpu @81df7000 s8896 r8192 d15680 u32768
[0.000000] Kernel command line: root=/dev/nfs rw
nfsroot=192.168.0.13:/opt/nfsroot/axel/xelk-2.1.0-qt5,v3,tcp
ip=192.168.0.123:192.168.0.13::255.255.255.0:xelk:eth0:off panic=1
fec_mac=00:50:c2:1e:af:e3)
[0.000000] PID hash table entries: 4096 (order: 2, 16384 bytes)
[0.000000] Dentry cache hash table entries: 262144 (order: 8, 1048576 bytes)
[0.000000] Inode-cache hash table entries: 131072 (order: 7, 524288 bytes)
[0.000000] Memory: 2038MB 8MB = 2046MB total
[0.000000] Memory: 1734884k/1734884k available, 362268k reserved, 424484K highmem
[0.000000] Virtual kernel memory layout:
[0.000000] vector : 0xffff0000 - 0xffff1000 (4 kB)
[0.000000] fixmap : 0xfff00000 - 0xfffe0000 (896 kB)
[0.000000] vmalloc : 0xe6800000 - 0xff000000 (392 MB)
[0.000000] lowmem : 0x80000000 - 0xe6000000 (1632 MB)
[0.000000] pkmap : 0x7fe00000 - 0x80000000 (2 MB)
[0.000000] modules : 0x7f000000 - 0x7fe00000 (14 MB)
[0.000000] .text : 0x80008000 - 0x80ccf544 (13086 kB)
[0.000000] .init : 0x80cd0000 - 0x80d102c0 (257 kB)
[0.000000] .data : 0x80d12000 - 0x80d74020 (393 kB)
[0.000000] .bss : 0x80d74020 - 0x80ddbbf8 (415 kB)
[0.000000] SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=4, Nodes=1
[0.000000] Preemptible hierarchical RCU implementation.
[0.000000] NR_IRQS:16 nr_irqs:16 16
[0.000000] L310 cache controller enabled
[0.000000] l2x0: 16 ways, CACHE_ID 0x410000c7, AUX_CTRL 0x32070000, Cache size: 1048576
B
[0.000000] sched_clock: 32 bits at 3000kHz, resolution 333ns, wraps every 1431655ms
[0.000000] CPU identified as i.MX6Q, silicon rev 1.5
[0.000000] Console: colour dummy device 80x30
[0.000719] Calibrating delay loop... 1581.05 BogoMIPS (lpj=7905280)
[0.090122] pid_max: default: 32768 minimum: 301
[0.090314] Mount-cache hash table entries: 512
[0.098643] CPU: Testing write buffer coherency: ok
[0.098911] CPU0: thread -1, cpu 0, socket 0, mpidr 80000000
[0.099015] Setting up static identity map for 0x806bfa90 - 0x806bfae8
[0.228960] CPU1: thread -1, cpu 1, socket 0, mpidr 80000001
[0.338960] CPU2: thread -1, cpu 2, socket 0, mpidr 80000002
[0.398959] CPU3: thread -1, cpu 3, socket 0, mpidr 80000003
[0.399058] Brought up 4 CPUs
[0.399087] SMP: Total of 4 processors activated (6324.22 BogoMIPS).
[0.399096] CPU: All CPU(s) started in SVC mode.
[0.399782] devtmpfs: initialized
[0.404009] pinctrl core: initialized pinctrl subsystem
[0.404307] regulator-dummy: no parameters
[0.427959] NET: Registered protocol family 16
[0.438095] DMA: preallocated 256 KiB pool for atomic coherent allocations
[0.438837] Use WDOG2 as reset source
[0.447072] syscon 20c8000.anatop: regmap [mem 0x020c8000-0x020c8fff] registered
[0.447318] vdd1p1: 800 <--> 1375 mV at 1125 mV
[0.447626] vdd3p0: 2800 <--> 3150 mV at 3000 mV
[0.447905] vdd2p5: 2000 <--> 2750 mV at 2425 mV
[0.448180] cpu: 725 <--> 1450 mV
[0.448452] vddpu: 725 <--> 1450 mV
[0.448731] vddsoc: 725 <--> 1450 mV
[0.450489] syscon 20e0000.iomuxc-gpr: regmap [mem 0x020e0000-0x020e0037] registered
[0.452762] syscon 21bc000.ocotp-ctrl: regmap [mem 0x021bc000-0x021bffff] registered
[0.455992] hw-breakpoint: found 5 (+1 reserved) breakpoint and 1 watchpoint registers.
[0.456004] hw-breakpoint: maximum watchpoint size is 4 bytes.
[0.457037] imx6q-pinctrl 20e0000.iomuxc: initialized IMX pinctrl driver
[0.465931] bio: create slab <bio-0> at 0
[0.467768] mxs-dma 110000.dma-apbh: initialized
[0.468398] usb_otg_vbus: 5000 mV
[0.468632] usb_h1_vbus: 5000 mV
[0.468809] 3P3V: 3300 mV

February, 2016 70/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

[0.469000] 1P8V: 1800 mV
[0.469269] vgaarb: loaded
[0.469916] SCSI subsystem initialized
[0.470297] usbcore: registered new interface driver usbfs
[0.470352] usbcore: registered new interface driver hub
[0.470459] usbcore: registered new device driver usb
[0.472274] i2c i2c-0: IMX I2C adapter registered
[0.472493] imx-i2c 21a8000.i2c: cannot look up pinctrl state recovery: -19 (bus recovery
disabled)
[0.473099] i2c i2c-1: IMX I2C adapter registered
[0.473192] Linux video capture interface: v2.00
[0.473237] pps_core: LinuxPPS API ver. 1 registered
[0.473248] pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti
<giometti@linux.it>
[0.473272] PTP clock support registered
[0.489025] imx-ipuv3 2400000.ipu: IPU DMFC NORMAL mode: 1(0~1), 5B(4,5), 5F(6,7)
[0.509018] imx-ipuv3 2800000.ipu: IPU DMFC NORMAL mode: 1(0~1), 5B(4,5), 5F(6,7)
[0.509846] imx6q-pinctrl 20e0000.iomuxc: pin MX6Q_PAD_GPIO_19 already requested by
20e0000.iomuxc; cannot claim for 21dc000.mipi_csi
[0.509863] imx6q-pinctrl 20e0000.iomuxc: pin-149 (21dc000.mipi_csi) status -22
[0.509876] imx6q-pinctrl 20e0000.iomuxc: could not request pin 149 on device
20e0000.iomuxc
[0.509889] mxc_mipi_csi2 21dc000.mipi_csi: Error applying setting, reverse things back
[0.509956] mxc_mipi_csi2 21dc000.mipi_csi: i.MX MIPI CSI2 driver probed
[0.509968] mxc_mipi_csi2 21dc000.mipi_csi: i.MX MIPI CSI2 dphy version is 0x3130302a
[0.510033] MIPI CSI2 driver module loaded
[0.510161] Advanced Linux Sound Architecture Driver Initialized.
[0.510885] Bluetooth: Core ver 2.16
[0.510929] NET: Registered protocol family 31
[0.510937] Bluetooth: HCI device and connection manager initialized
[0.510956] Bluetooth: HCI socket layer initialized
[0.510969] Bluetooth: L2CAP socket layer initialized
[0.511000] Bluetooth: SCO socket layer initialized
[0.511284] cfg80211: Calling CRDA to update world regulatory domain
[0.512210] Switching to clocksource mxc_timer1
[0.753556] imx6q-pcie 1ffc000.pcie: phy link never came up
[0.753755] PCI host bridge to bus 0000:00
[0.753776] pci_bus 0000:00: root bus resource [io 0x1000-0x10000]
[0.753788] pci_bus 0000:00: root bus resource [mem 0x01000000-0x01efffff]
[0.753804] pci_bus 0000:00: No busn resource found for root bus, will use [bus 00-ff]
[0.755206] PCI: bus0: Fast back to back transfers disabled
[0.756055] PCI: bus1: Fast back to back transfers enabled
[0.756266] pci 0000:00:00.0: BAR 0: assigned [mem 0x01000000-0x010fffff]
[0.756313] pci 0000:00:00.0: BAR 6: assigned [mem 0x01100000-0x0110ffff pref]
[0.756327] pci 0000:00:00.0: PCI bridge to [bus 01]
[0.765607] NET: Registered protocol family 2
[0.766225] TCP established hash table entries: 16384 (order: 5, 131072 bytes)
[0.766597] TCP bind hash table entries: 16384 (order: 5, 131072 bytes)
[0.766958] TCP: Hash tables configured (established 16384 bind 16384)
[0.767178] TCP: reno registered
[0.767198] UDP hash table entries: 1024 (order: 3, 32768 bytes)
[0.767303] UDP-Lite hash table entries: 1024 (order: 3, 32768 bytes)
[0.767691] NET: Registered protocol family 1
[0.768039] RPC: Registered named UNIX socket transport module.
[0.768052] RPC: Registered udp transport module.
[0.768059] RPC: Registered tcp transport module.
[0.768066] RPC: Registered tcp NFSv4.1 backchannel transport module.
[0.768603] hw perfevents: enabled with ARMv7 Cortex-A9 PMU driver, 7 counters available
[0.769502] pureg-dummy: no parameters
[0.770453] imx6_busfreq busfreq.15: DDR medium rate not supported.
[0.770899] Bus freq driver module loaded
[0.777544] VFS: Disk quotas dquot_6.5.2
[0.780105] NFS: Registering the id_resolver key type
[0.780157] Key type id_resolver registered
[0.780166] Key type id_legacy registered
[0.780206] NTFS driver 2.1.30 [Flags: R/W].
[0.780614] fuse init (API version 7.22)
[0.781002] msgmni has been set to 3199
[0.782370] io scheduler noop registered
[0.782381] io scheduler deadline registered
[0.782414] io scheduler cfq registered (default)
[0.782678] imx-weim 21b8000.weim: WEIM driver registered.
[0.784346] MIPI DSI driver module loaded

February, 2016 71/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

[0.785224] mxc_sdc_fb fb.23: register mxc display driver ldb
[0.785247] mxc_ldb 20e0000.ldb: change IPU DI1 to IPU DI0 for LDB channel0.
[0.785460] mxc_sdc_fb fb.23: using reserved memory region at 0x8f600000, size 1 MiB
[0.785474] mxc_sdc_fb fb.23: assigned reserved memory node splashscreen
[0.785486] mxc_sdc_fb fb.23: using memory region 0x8f600000 0x8f776fff
[0.827938] imx-sdma 20ec000.sdma: no iram assigned, using external mem
[0.828742] imx-sdma 20ec000.sdma: loaded firmware 1.1
[0.831117] imx-sdma 20ec000.sdma: initialized
[0.832576] pfuze100-regulator 0-0008: Full lay: 2, Metal lay: 1
[0.833178] pfuze100-regulator 0-0008: FAB: 0, FIN: 0
[0.833191] pfuze100-regulator 0-0008: pfuze100 found.
[0.834616] SW1AB: 300 <--> 1875 mV at 1150 mV
[0.836536] SW1C: 300 <--> 1875 mV at 1175 mV
[0.838453] SW2: 800 <--> 3300 mV at 3300 mV
[0.840367] SW3A: 400 <--> 1975 mV at 1500 mV
[0.842278] SW3B: 400 <--> 1975 mV at 1500 mV
[0.845204] SW4: ramp_delay not set
[0.845218] SW4: 1800 mV
[0.846563] SWBST: 5000 <--> 5150 mV at 5000 mV
[0.847888] VSNVS: 1200 <--> 3000 mV at 3000 mV
[0.848621] VREFDDR: 750 mV
[0.849345] VGEN1: 800 <--> 1550 mV at 1500 mV
[0.850668] VGEN2: 800 <--> 1550 mV at 1500 mV
[0.853732] VGEN3: 2500 mV
[0.856829] VGEN4: 1800 mV
[0.859892] VGEN5: 2800 mV
[0.862378] VGEN6: 3300 mV
[0.863225] Serial: 8250/16550 driver, 4 ports, IRQ sharing disabled
[0.864316] Serial: IMX driver
[0.864672] 21ec000.serial: ttymxc2 at MMIO 0x21ec000 (irq = 60) is a IMX
[1.806014] console [ttymxc2] enabled
[1.810006] serial: Freescale lpuart driver
[1.815543] [drm] Initialized drm 1.1.0 20060810
[1.820607] [drm] Initialized vivante 1.0.0 20120216 on minor 0
[1.833301] brd: module loaded
[1.839845] loop: module loaded
[1.846775] nand: device found, Manufacturer ID: 0x01, Chip ID: 0xdc
[1.853177] nand: AMD/Spansion S34ML04G1
[1.857129] nand: 512MiB, SLC, page size: 2048, OOB size: 64
[1.862996] gpmi-nand 112000.gpmi-nand: mode:4 ,failed in set feature.
[1.869566] Scanning device for bad blocks
[2.312288] Bad eraseblock 4010 at 0x00001f540000
[2.326396] 8 cmdlinepart partitions found on MTD device gpmi-nand
[2.332624] Creating 8 MTD partitions on "gpmi-nand":
[2.337710] 0x000000000000-0x000000800000 : "nand-uboot"
[2.343986] 0x000000800000-0x000000900000 : "nand-env1"
[2.350066] 0x000000900000-0x000000a00000 : "nand-env2"
[2.356187] 0x000000a00000-0x000000b00000 : "nand-fdt"
[2.362162] 0x000000b00000-0x000000c00000 : "nand-spare"
[2.368298] 0x000000c00000-0x000001400000 : "nand-kernel"
[2.374554] 0x000001400000-0x000001800000 : "nand-splash"
[2.380826] 0x000001800000-0x000020000000 : "nand-ubi"
[2.387169] gpmi-nand 112000.gpmi-nand: driver registered.
[2.394047] m25p80 spi32766.0: s25fl256s1 (32768 Kbytes)
[2.399375] 7 cmdlinepart partitions found on MTD device spi32766.0
[2.405667] Creating 7 MTD partitions on "spi32766.0":
[2.410818] 0x000000000000-0x000000100000 : "spi-uboot"
[2.416994] 0x000000100000-0x000000140000 : "spi-env1"
[2.423009] 0x000000140000-0x000000180000 : "spi-env2"
[2.429016] 0x000000180000-0x000000200000 : "spi-dtb"
[2.434946] 0x000000200000-0x000000800000 : "spi-kernel"
[2.441071] 0x000000800000-0x000000c00000 : "spi-splash"
[2.447243] 0x000000c00000-0x000002000000 : "spi-free"
[2.453265] spi_imx 2008000.ecspi: probed
[2.458038] CAN device driver interface
[2.462688] flexcan 2090000.can: device registered (reg_base=e69e0000, irq=142)
[2.475230] libphy: fec_enet_mii_bus: probed
[2.479934] fec 2188000.ethernet eth0: registered PHC device 0
[2.486529] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver
[2.493108] ehci-pci: EHCI PCI platform driver
[2.497978] usbcore: registered new interface driver usb-storage
[2.512236] ci_hdrc ci_hdrc.1: doesn't support gadget
[2.517350] ci_hdrc ci_hdrc.1: EHCI Host Controller

February, 2016 72/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

[2.522299] ci_hdrc ci_hdrc.1: new USB bus registered, assigned bus number 1
[2.542285] ci_hdrc ci_hdrc.1: USB 2.0 started, EHCI 1.00
[2.547792] usb usb1: New USB device found, idVendor=1d6b, idProduct=0002
[2.554629] usb usb1: New USB device strings: Mfr=3, Product=2, SerialNumber=1
[2.561881] usb usb1: Product: EHCI Host Controller
[2.566802] usb usb1: Manufacturer: Linux 3.10.17-xelk-2.2.0 ehci_hcd
[2.573283] usb usb1: SerialNumber: ci_hdrc.1
[2.578239] hub 1-0:1.0: USB hub found
[2.582037] hub 1-0:1.0: 1 port detected
[2.586789] mousedev: PS/2 mouse device common for all mice
[2.593074] i2c-core: driver [egalax_i2c] using legacy suspend method
[2.599546] i2c-core: driver [egalax_i2c] using legacy resume method
[2.606609] input: TSC2007 Touchscreen as
/devices/soc0/soc.1/2100000.aips-bus/21a8000.i2c/i2c-1/1-0048/input/input0
[2.618038] snvs_rtc 20cc034.snvs-rtc-lp: rtc core: registered 20cc034.snvs-rtc-lp as
rtc0
[2.626453] i2c /dev entries driver
[2.632415] VGEN4: operation not allowed
[2.639407] VGEN3: operation not allowed
[2.742480] ov5640_read_reg:write reg error:reg=300a
[2.747475] camera ov5640_mipi is not found
[2.752224] mxc_v4l2_output v4l2_out.26: V4L2 device registered as video16
[2.759295] mxc_v4l2_output v4l2_out.26: V4L2 device registered as video17
[2.767710] ina2xx 1-0044: power monitor ina226 (Rshunt = 10000 uOhm)
[2.775235] imx2-wdt 20bc000.wdog: IMX2+ Watchdog Timer enabled. timeout=60s (nowayout=0)
[2.783591] Bluetooth: HCI UART driver ver 2.2
[2.788065] Bluetooth: HCI H4 protocol initialized
[2.792907] Bluetooth: HCI BCSP protocol initialized
[2.797900] Bluetooth: HCILL protocol initialized
[2.802750] cpuidle: using governor ladder
[2.806876] cpuidle: using governor menu
[2.810854] sdhci: Secure Digital Host Controller Interface driver
[2.817079] sdhci: Copyright(c) Pierre Ossman
[2.821463] sdhci-pltfm: SDHCI platform and OF driver helper
[2.827890] mmc0: no vqmmc regulator found
[2.832023] mmc0: no vmmc regulator found
[2.872281] mmc0: SDHCI controller on 2190000.usdhc [2190000.usdhc] using ADMA
[2.881944] mmc1: no vqmmc regulator found
[2.890142] mmc1: no vmmc regulator found
[2.944297] mmc1: SDHCI controller on 2194000.usdhc [2194000.usdhc] using ADMA
[3.603028] Galcore version 4.6.9.9754
[3.636156] mxc_vdoa 21e4000.vdoa: i.MX Video Data Order Adapter(VDOA) driver probed
[3.644724] mxc_asrc 2034000.asrc: mxc_asrc registered
[3.650584] mxc_vpu 2040000.vpu: VPU initialized
[3.786682] caam 2100000.caam: device ID = 0x0a16010000000000 (Era -524)
[3.793436] caam 2100000.caam: job rings = 2, qi = 0
[3.798928] caam 2100000.caam: authenc-hmac-md5-cbc-aes-caam
[3.804749] caam 2100000.caam: authencesn-hmac-md5-cbc-aes-caam
[3.810803] caam 2100000.caam: authenc-hmac-sha1-cbc-aes-caam
[3.816701] caam 2100000.caam: authencesn-hmac-sha1-cbc-aes-caam
[3.822854] caam 2100000.caam: authenc-hmac-sha224-cbc-aes-caam
[3.828903] caam 2100000.caam: authencesn-hmac-sha224-cbc-aes-caam
[3.835228] caam 2100000.caam: authenc-hmac-sha256-cbc-aes-caam
[3.841289] caam 2100000.caam: authencesn-hmac-sha256-cbc-aes-caam
[3.847619] caam 2100000.caam: authenc-hmac-md5-cbc-des3_ede-caam
[3.853856] caam 2100000.caam: authencesn-hmac-md5-cbc-des3_ede-caam
[3.860342] caam 2100000.caam: authenc-hmac-sha1-cbc-des3_ede-caam
[3.866668] caam 2100000.caam: authencesn-hmac-sha1-cbc-des3_ede-caam
[3.873255] caam 2100000.caam: authenc-hmac-sha224-cbc-des3_ede-caam
[3.879748] caam 2100000.caam: authencesn-hmac-sha224-cbc-des3_ede-caam
[3.886499] caam 2100000.caam: authenc-hmac-sha256-cbc-des3_ede-caam
[3.893004] caam 2100000.caam: authencesn-hmac-sha256-cbc-des3_ede-caam
[3.899750] caam 2100000.caam: authenc-hmac-md5-cbc-des-caam
[3.905548] caam 2100000.caam: authencesn-hmac-md5-cbc-des-caam
[3.911601] caam 2100000.caam: authenc-hmac-sha1-cbc-des-caam
[3.917497] caam 2100000.caam: authencesn-hmac-sha1-cbc-des-caam
[3.923648] caam 2100000.caam: authenc-hmac-sha224-cbc-des-caam
[3.929702] caam 2100000.caam: authencesn-hmac-sha224-cbc-des-caam
[3.936033] caam 2100000.caam: authenc-hmac-sha256-cbc-des-caam
[3.942088] caam 2100000.caam: authencesn-hmac-sha256-cbc-des-caam
[3.948414] caam 2100000.caam: ecb-des-caam
[3.952744] caam 2100000.caam: ecb-arc4-caam
[3.957142] caam 2100000.caam: ecb-aes-caam

February, 2016 73/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

[3.961439] caam 2100000.caam: ctr-aes-caam
[3.965756] caam 2100000.caam: cbc-aes-caam
[3.970074] caam 2100000.caam: ecb-des3-caam
[3.974489] caam 2100000.caam: cbc-3des-caam
[3.978872] caam 2100000.caam: cbc-des-caam
[3.983104] caam 2100000.caam: fsl,sec-v4.0 algorithms registered in /proc/crypto
[3.994234] platform 2101000.jr0: registering rng-caam
[4.000556] platform caam_sm: caam_sm_test: 8-byte key test match OK
[4.007091] platform caam_sm: caam_sm_test: 16-byte key test match OK
[4.013707] platform caam_sm: caam_sm_test: 32-byte key test match OK
[4.020624] platform caam_secvio.28: security violation service handlers armed
[4.028081] usbcore: registered new interface driver usbhid
[4.033697] usbhid: USB HID core driver
[4.040466] TCP: cubic registered
[4.044318] NET: Registered protocol family 10
[4.049740] sit: IPv6 over IPv4 tunneling driver
[4.055026] NET: Registered protocol family 17
[4.059520] can: controller area network core (rev 20120528 abi 9)
[4.065827] NET: Registered protocol family 29
[4.070341] can: raw protocol (rev 20120528)
[4.074657] can: broadcast manager protocol (rev 20120528 t)
[4.080354] can: netlink gateway (rev 20130117) max_hops=1
[4.086188] Bluetooth: RFCOMM TTY layer initialized
[4.091119] Bluetooth: RFCOMM socket layer initialized
[4.096304] Bluetooth: RFCOMM ver 1.11
[4.100083] Bluetooth: BNEP (Ethernet Emulation) ver 1.3
[4.105435] Bluetooth: BNEP filters: protocol multicast
[4.110696] Bluetooth: BNEP socket layer initialized
[4.115702] Bluetooth: HIDP (Human Interface Emulation) ver 1.2
[4.121658] Bluetooth: HIDP socket layer initialized
[4.126706] 8021q: 802.1Q VLAN Support v1.8
[4.131219] Key type dns_resolver registered
[4.135712] VFP support v0.3: implementor 41 architecture 3 part 30 variant 9 rev 4
[4.146875] VGEN6: disabling
[4.151391] VGEN1: disabling
[4.156288] input: gpio-keys.22 as /devices/soc0/gpio-keys.22/input/input1
[4.165577] snvs_rtc 20cc034.snvs-rtc-lp: setting system clock to 1970-01-01 00:00:01 UTC
(1)
[4.185004] fec 2188000.ethernet eth0: Freescale FEC PHY driver [Micrel KSZ9031 Gigabit
PHY] (mii_bus:phy_addr=2188000.ethernet:07, irq=-1)
[4.197650] IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready
[7.182589] libphy: 2188000.ethernet:07 - Link is Up - 100/Full
[7.202338] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready
[7.222798] IP-Config: Complete:
[7.226089] device=eth0, hwaddr=00:50:c2:1e:af:e3, ipaddr=192.168.0.123,
mask=255.255.255.0, gw=255.255.255.255
[7.236688] host=xelk, domain=, nis-domain=(none)
[7.241873] bootserver=192.168.0.13, rootserver=192.168.0.13, rootpath=
[7.249049] ALSA device list:
[7.252057] No soundcards found.
[7.270816] VFS: Mounted root (nfs filesystem) on device 0:11.
[7.279473] devtmpfs: mounted
[7.283499] Freeing unused kernel memory: 256K (80cd0000 - 80d10000)
INIT: version 2.88 booting
Starting udev
[9.359826] udevd[150]: starting version 182
[11.258760] ERROR: v4l2 capture: slave not found!
[11.277313] ERROR: v4l2 capture: slave not found!
Starting Bootlog daemon: bootlogd: cannot allocate pseudo tty: No such file or directory
bootlogd.
Populating dev cache
ALSA: Restoring mixer settings...
Configuring network interfaces... /usr/sbin/alsactl: load_state:1729: No soundcards found...
ifup skipped for nfsroot interface eth0
run-parts: /etc/network/if-pre-up.d/nfsroot exited with return code 1
Starting rpcbind daemon...done.
Sat Jun 13 11:18:00 UTC 2015
INIT: Entering runlevel: 5
Starting system message bus: dbus.
Starting OpenBSD Secure Shell server: sshd
done.
Starting advanced power management daemon: No APM support in kernel
(failed.)

February, 2016 74/75

X E L K Q u i c k S t a r t G u i d e v . 1 . 0 . 5

Starting syslogd/klogd: done
 * Starting Avahi mDNS/DNS-SD Daemon: avahi-daemon
 ...done.
Starting Telephony daemon
Starting Linux NFC daemon
Stopping Bootlog daemon: bootlogd.
Using calibration data stored in /etc/pointercal

Poky (Yocto Project Reference Distro) 1.5.1 xelk-l /dev/ttymxc2

xelk-l login:

February, 2016 75/75

	1 Preface
	1.1 About this manual
	1.2 Copyrights/Trademarks
	1.3 Standards
	1.4 Disclaimers
	1.5 Warranty
	1.6 Technical Support
	1.7 Related documents
	1.8 Conventions, Abbreviations, Acronyms

	2 Introduction
	2.1 AXEL SOM
	2.2 XELK
	2.2.1 Kit Contents
	2.2.2 XELK Release Notes
	2.2.2.1 Version 1.0.0
	2.2.2.2 Version 1.1.0
	2.2.2.3 Version 1.2.0
	2.2.2.4 Version 2.0.0
	2.2.2.5 Version 2.1.0
	2.2.2.6 Version 2.2.0
	2.2.2.7 Releases history
	2.2.2.8 Release type
	2.2.2.9 Known limitations

	3 XELK Quick Start
	3.1 Unboxing
	3.2 Hardware setup
	3.3 First boot
	3.4 Selecting boot device
	3.4.1 Boot from SD
	3.4.2 Boot from SPI NOR flash (XELK default)

	3.5 DVDK installation
	3.5.1 DVDK features
	3.5.2 MicroSD contents
	3.5.3 Extracting the .OVA file
	3.5.4 Importing the virtual machine
	3.5.5 Launching the virtual machine
	3.5.6 Updating the XELK distributions

	4 Develoment tools
	4.1 Embedded Linux
	4.2 Software components
	4.2.1 Toolchain
	4.2.2 Bootloader
	4.2.3 Kernel
	4.2.3.1 Linux Device Tree

	4.2.4 Target root file system
	4.2.5 Yocto
	4.2.6 ConfigID
	4.2.6.1 ConfigID advantage
	4.2.6.2 UniqueID advantage

	4.2.7 Software components git repositories
	4.2.8 Updating the XELK git repositories
	4.2.8.1 RSA key generation
	4.2.8.2 Checking the ssh connection to the git repositories

	4.3 Development environment
	4.3.1 Introduction
	4.3.2 The build system
	4.3.3 Overview of the installed components
	4.3.4 Setting up the server environment
	4.3.4.1 TFTP Server
	4.3.4.2 NFS Server
	4.3.4.3 Pre-built toolchain
	4.3.4.4 Pre-built root file system

	4.4 Building the software components with Yocto
	4.4.1 Prerequisites
	4.4.2 Initializing the build environment
	4.4.3 Build the Yocto image

	4.5 Building the software components outside Yocto
	4.5.1 Build/configure U-Boot
	4.5.2 Build/configure Linux kernel
	4.5.3 Build a custom application

	4.6 Programming the flash memory
	4.6.1 Flashing binary images in NOR/NAND flash
	4.6.1.1 U-Boot
	4.6.1.2 Linux kernel
	4.6.1.3 Device tree

	4.6.2 Flashing root file systems

	4.7 Customizing the splash screen
	4.7.1 Customizing the splash screen
	4.7.2 Additional resources
	4.7.3 Splash image in NOR SPI flash
	4.7.3.1 U-Boot variables
	4.7.3.2 Commands

	4.7.4 Splash image in NAND flash
	4.7.4.1 U-Boot variables
	4.7.4.2 Commands

	4.8 Building Qt applications
	4.8.1 Launching Qt Creator
	4.8.2 Building a QtQuick “Hello World!”

	5 Frequently Asked Questions
	5.1 Q: Where can I found AXEL SOM information?
	5.2 Q: I've received the XELK package. How am I supposed to start working with it?
	5.3 Q: How can I update the XELK version?
	5.4 Q: How can I update the git repositories provided with XELK 2.0.0 to XELK 2.2.0 version?
	5.5 Q: How can I work with the XYZ peripheral/interface?
	5.6 Q: How can I configure the AXEL system to boot from network?
	5.7 Q: Can you suggest some guidelines for the carrier board design?
	5.8 Q: How can I change the CPU clock frequency?
	5.9 Q: How can I limit the number of active CPU cores?
	5.10 Q: How can I modify the IP address of the board?

	6 Appendices
	6.1 U-Boot startup messages
	6.2 U-Boot default environment
	6.3 Boot messages on the serial console

